
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7441--93-7071

MDFF HELP Library, Version 2:
On-Line Documentation for the
Map Data Formatting Facility

S. A. MYRICK

P. B. WISCHOW
M. C. LOHRENZ

M. E. TRENCHARD

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

M. L. GENDRON

L. M. RIEDLINGER

J. M. MEHAFFEY

Planning Systems, Inc.
Slidell, LA 70458

March 7, 1994

Approved for public release; distribution is unlimited.

-U

-- -m-m- - - mMM"a mm a aift"

I REPORT DOCUMENTATION PAGE Form Approved
PublIcOBM No. 0704-01881Public reporting burden foe this Collection of mntoffatson a estirmated to average I hour per response, unctuding the time tor reviewing instructions, searching existing data sources, gathernng and
maritalntaing the dsta neded, comptatnand reviwhig the collection of information. Sendecorrrients regardingthis burden or any otheraspect of this colletion of information. inluding suggestions
for reducing ths burden, to Washington Headquarters Services. Directorate for inornation Operations and Reports, 12t5 Jefferson Davis Highway, Suite 1204, Arlington. VA 22202-4302. and to
the Office of Management and Budget. Paperwork Reduction Protect (0704-0188). Washinoton. DC 20503

1. Agency Use Only (Leave blank) 2. Report Date. 3. Report Type and Dates Covered.
March 7, 1994 Final

4. Title and Subtitle. S. Funding Numbers.

MDFF HELP Library, Version 2: On-Line Documentation Program Element No. 0604214N
for the Map Data Formatting Facility Project No.

6. Author(s). rask No.

S. A. Myrick, P. W. Wischow, M. C. Lohrenz, M. E. Trenchard, M. L. Gendron', Accession No. DN257017

L. M. Riedlinger, and J. M. Mehaffey Work Unit No. 74526903

7. Performing Organization Name(s) and Address(es). 8. Performing Organization

Naval Research Laboratory Report Number.
Marine Geosciences Division NRL/MR/7441--93-7071
Stennis Space Center, MS 39529-5004

9. SponsoringlMonitorlng Agency Name(s) and Address(es). 10. Sponsoring/Monitoring Agency
Report Number.

Naval Research Laboratory
Naval Air Systems Command NRUMRf7441--93-7071
Washington, DC 20361-8030

11. Supplementary Notes.
'Ianning Systems, Inc.
Slidell, LA 70458

12a. Distribution/Avallability Statement. 12b. Distribution Code.

Approved for public release; distribution is unlimited.

13. Abstract (Maximum 200 *,vrds).

The purpose of this report is to describe on-line documentation for the Naval Research Laboratory's Map Data Formatting
Facility (MDFF). The MDFF utilizes Digital Equipment Corporation (DEC) computers to process several types of data including
Compressed Aeronautical Chart, Compressed Nautical Chart, and Digital Landmass System. Using DEC software utilities, on-
line documentation has been developed that provides information pertaining to the processing and compression of these data
types and to other topics that are specific to the MDFF.

14. Subject Terms. 15. Number of Pages.

Digital Maps, Optical Storage, Databases, Data Compression 207

16. Price Code.

17. Security Classification 18. Security Classification 19. Security Classification 20. Limitation of Abstract.
of Report. of This Page. of Abstract.

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 i Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

r,
r:-

,,

I..

C

I

I

I

I
I
I
I
I
I
I

I
I
U

I
I
I
I
I
I

I

C.

c.

r-

r,

Contents
INTRODUCTION

FUNCTIONALITY/REQUIREMENTS

CREATION and MAINTENANCE

SUMARY

ACKNOWLEDGMENTS

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

APPENDIX N

TOPIC FILE ACRONYMS.HLP

TOPIC FILE ARCHIVE.HLP

TOPIC FILE BITMAPS.HLP

TOPIC FILE CACPROCESSING.HLP . . .

TOPIC FILE CACPROGRAMDESCRIPTIONS.

TOPIC FILE CACSOURCECODE.HLP . .

TOPIC FILE CNCPROCESSING.HLP . . .

TOPIC FILE DEFINITIONS.HLP

TOPIC FILE DLMSPROCESSING.HLP . .

TOPIC FILE HINTS.HLP

TOPIC FILE LOGICALNAME.HLP

TOPIC FILE MAPSTATION.HLP . . .

TOPIC FILE PROCESSINGTHREAD.HLP .

TOPIC FILE SYMBOLS.HLP

HLP

.

.

*

* * . . .

* * . . .

* * * . .

* * . . .

1

1

2

2

2

A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

I-1

J-1

K-1

L-1

M-1

. N-1

iii

*.

..

I

MDFF HELP Library Version 2:
On-line Documentation for the Map Data Formatting Facility

INTRODUCTION

The Map Data Formatting Facility (MDFF) utilizes Digital Equipment
Corporation (DEC) computer hardware and software in its research
and development efforts. This memorandum report assumes that the
reader is familiar with the VAX/VMS operating system. A VAX/VMS
utility is used to create on-line documentation in the form of a
HELP library, which is referred to as the MDFF HELP library because
it contains topics that are specific to the MDFF. The intent of
the MDFF HELP library is to provide accurate and current
information that is readily available, user friendly, and easily
maintained. Because the MDFF is a research and development
project, continual updates to the MDFF HELP library will be
required.

FUNCTIONALITY/REQUIREMENTS

The presentation and recovery of on-line documentation within the
MDFF HELP library is functionally similar to the VAX/VMS HELP
library. The MDFF HELP library is invoked by using the symbol DEC
Control Language (DCL) symbol KDFFHELP. MDFFHELP is a convenient
symbol for simplifying the day-to-day usage of the rather lengthy
VAX/VMS librarian command:

HELP/LIBRARY = MDFFSYSTEM:[DOCSHELP)MDFF.HLB

Once the MDFF HELP utility is invoked, alphabetized topics are
displayed. Information about a specific topic is made available by
entering the name of a topic at the prompt. Main topics currently
provided by the MDFF HELP utility are listed in Figure 1. Note
that several types of data are processed by the MDFF, including
Compressed Aeronautical Chart (CAC), Compressed Nautical Chart
(CNC), and Digital Landmass System (DLMS).

Topics pertaining to specific data types are differentiated by
using the data type as part of the topic name. For example, the
topic named CACPROCESSING provides documentation relevant to CAC
data processing. Likewise, the CNCPROCESSING topic provides
documentation relevant to CNC data processing. Topic names, though
lengthy, are descriptive and follow DEC recommendations for
restricting names to upper and lower cases, digits, underscores,
and hyphens.

The VAX/VMS library utility is used to create the MDFF HELP
library. Individual text files, which contain information
pertaining to individual topics, are written according to a
specified format and are directly input to the library. For

1

example, a single text file, which contains information about the
topic CAC PROCESSING, is used to build that portion of the library.
By default, text files that are used to build the MDFF HELP library
must have the file extension HLP. 3
The VAX/VMS library utility requires the text files to be written
in a specific format. Each file must contain key numbers in the
first column, followed by the name of the key. Topics that will
appear in the initial topic listing, as shown in Figure 1, must use
key one. All subtopics use keys two through nine, and consist of
a key number followed by the name of the subkey. Figure 2 lists
the text file named ARCHIVE.HLP (the first 20 lines) and the format I
used. The appendices contain listings of current topic files.
Appendices A through N contain components of CAC processing and
utility software. I
CREATION and MAINTENANCE |

A DCL command file (Figure 3) is used to invoke the VAX/VMS
library utility and to create MDFF HELP. Note that the command
file contains two commands: the first command creates the MDFF HELP I
library, and the second command inserts the topics. Because all
topic files have the extension ILP, they are automatically inserted
into the MDFF HELP library. Presently, this command file is
located on the directory MDFF SYSTEM:[DOCSHELP] and is named
MDFFHELP REBUILD.COM. The following syntax is used for invocation:

@MDFFHELPREBUILD.COM I
MDFFHELPREBUILD.COM is used for adding new topics to MDFF HELP
and for modifying existing ones. For inclusion into MDFF HELP, all
topic files must reside in the directory MDFFSYSTEM:[DOCSHELP].

SUMMARY

On-line documentation for the MDFF is available through the MDFF
HELP library. The MDFF HELP library provides information that is
readily available, user friendly, and easily maintained. Format
requirements for individual topic files are defined. The command
file, MDFFHELPREBUILD.COM, is utilized for proper creation and
maintenance.

The MDFF HELP library will require updates in keeping with
continuing research and development efforts of the MDFF project.

ACKNOWLEDGMENTS I
The MDFF project is funded by the Naval Air Systems Command
(NAVAIR), offices of the AV-8B (Program Element 0604214N), F/A-18 £

2

(APN), and V-22 (Program Element 0604262N). We thank the following r,
program managers at NAVAIR for their support: Major Randy Siders *
(AV-8B), CDR Steve Christensen and CDR Chris Cleaver (F/A-18), and -I

CDR Tom Curtis (V-22).

3

Figure 1. MDFF HELP Main Topics

Figure 2. MDFF HELP Library Text File and Format

4

HELP

This HELP LIBRARY is specific to NRL MDFF Laboratory
topics. For DEC VAX/VMS topics use the default
VAX/VMS HELP LIBRARY.

Additional information available:

Acronyms Archive Bitmaps CACProcessing
CAC ProgramDescriptions CACSourceCode CNC Processing
Definitions DLMS Processing HELP Hints
LogicalNames Mapstation ProcessingThreads
Symbols

I

I

I

I

I

I

I
I

I
1 Archive
ARCHIVE is a program that is used to display and maintain
MDFF archive data sets. MDFF archive data sets serve
several purposes including:

* Providing historical research data.
* Providing examples of significant features.
* Establishing data sets for base-line testing.
* Establishing data sets for demonstrations.

2 Overview
Type the following command to execute ARCHIVE:

RUN/NODEB MDFFEXE:ARCHIVE

ARCHIVE is menu driven. The main menu offers the following
options (which are described as subtopics).

VIEW: Displays the archive data set.
ADD: Adds new data into the ARCHIVE data set.

I

I
I

I
1

I

I
I

I

I

i

$! *l

$! Command file for building the MDFF HELP Library *

$! Written by: Stephanie A. Myrick 10/11/91 *

$! Recreate MDFF HELP library
$ library/create=(keysize=25) /help mdff_system: [docshelpjmdff

$! Insert all topics - files with HLP extension
$ library/insert/help/log mdff_system:[docshelp]mdff -

mdff_system:[docshelp]*.hlp

Figure 3. Command File for Building MDFF HELP

5

I
I
I
I
I

C-

r.

APPENDIX A
TOPIC FILE ACRONYMS.HLP

*. *..*....*.*.*..* **

*. . ..

*

*

*.** . . * . * . * * * * * * * * * * *

*..

* . *. . ** * * *** * * * * * . . * . .

..

.....

* ** . * ** . .. ** ... * . * .* *

* . .*.

* *. *...........

* . * . * * . .. *. .*

* C C C .

* *. .C . .C

. .C .CC*. C .

. . . . C . . C . C . . . C . . C . C . . . * C .

* *C *.. .. * . .

* C *. * . .

*~~~~~~~~~~ . C

*C

A-3
A-3
A-3
A-3
A-4
A-4
A-4
A-4
A-4
A-4
A-4
A-4
A-4
A-4
A-4
A-4
A-5
A-5
A-5
A-5
A-5
A-5
A-5
A-5
A-5
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-6
A-7
A-7
A-7
A-7
A-7
A-7
A-7
A-7
A-7

A-l

1:2M
1:1M
1: 500K
1: 250K
1:100K
1:50K
ADRG
AGL .
AMSL
AOD .
ARC .
ASCII
ASWPC
CAC
CD
CD-ROM
CHUM
CLUT
CN
CNC
CRT
CSVQ
DFAD
DFID
DLMS
DMA
DMAAC
DMS
DR
DTED
ECHUM
EEPROM
EQ
FACS
FIPS
FIPSPUB
FLIPS
FRC
GLCC
GNC
HTI
ISO
JNC
JOG
KNTC
LCC
MC&G

..

-

I

.

. . .C. .. . * . . .

C C CC. .C*. . * .*. . . .

I
A-7
A-7
A-7
A-7
A-8
A-8
A-8
A-8
A-8
A-8
A-8
A-8
A-9
A-9
A-9
A-9
A-9
A-9
A-9
A-9
A-9
A-9
A-9
A-9
A-9

I

I
I

I

I

I

I
. A-10

I
I

I
I

I

I

I

I
A-2

I

I

MDFF
MEF . .
MO . .
MOMS
MTE . .
NOTAM .
NP . .
NT . .
ODI
ONC . .
PA . .
PNTC
RGB . .
SEC . .
SP .
ST . .
TLM . .
TPC . .
TS . .
VFR . .
VFRTA .
VQ . .
WGS . .
WORM
YMC . .
ZDR . .

.

.: : . . .

. . . . : .

: :

.

C-

C-
r-

TOPIC FILE: ACRONYMB.HLP

The following text and subtopics appear when Acronyms is selected
as an MDFFHELP topic:

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 Acronyms
Acronyms are used throughout the MDFF environment. This topic
defines some commonly used acronyms.

2 1:2M
1:2,000,000 scale chart.

2 l:1M
1:1,000,000 scale chart.

2 1:500K
1:500,000 scale chart.

2 1:250K
1:250,000 scale chart.

A-3

Acronyms
Acronyms are used throughout the MDFF environment. This
topic defines some commonly used acronyms.

Additional information available:

1:2M l:1M 1:500K 1:250K 1:100K 1:50K
ADRG AGL AMSL AOD ARC ASCII
ASWPC CAC CD CDROM CHUM CLUT
CN CNC CRT CSVQ DFAD DFID
DLMS DMA DMAAC DMS DR DTED
ECHUM EEPROM EQ FACS FIPS
FIPSPUB FLIPS FRC GLCC GNC HTI
ISO JNC JOG KNTC LCC MC&G
MDFF MEF MO MOMS MTE NOTAM
NP NT ODI ONC PA PNTC
RGB SEC SP ST TLM TPC
TS VFR VFRTA VQ WGS WORM
YMC ZDR

2 1:100K
1:100,000 scale chart.

2 1:50K
1:50,000 scale chart. 5

2 ADRG
ARC Digitized Raster Graphics. A 24 bit scanned chart
database that is produced by the Defense Mapping Agency
at a resolution of 256 pixels per inch.

2 AGL |
Above Ground Level.

2 AMSL 3
Above Mean Sea Level.

2 AOD|
Aircraft Optical Disk. A WORM to which a map-station
optical disk image is written. The AOD is used by the
Digital Moving Map System onboard tactical aircraft
for in-flight navigation.

2 ARC
Equal Arc-Second Raster Chart. A type of Tessellated I
Spheroid system used to store ADRG data.

2 ASCII
American Standard Code for Information Interchange.
A standard for information exchange between
equipment produced by different manufacturers.

2 ASWPC
Anti-Submarine Warfare Plotting Charts (1:1,166,614 scale).

2 CAC
Compressed Aeronautical Chart. A 2-bits per pixel
version of aeronautical ARC Digitized Raster Graphics,
that is stored in Tessellated Spheroid projection for I
use in mission planning systems and Digital Moving Map
Systems. The resolution is 128 pixels per inch. 5

2 CD
Compact Disk - Read Only Memory. Optical storage media
that holds approximately 600 Mbytes. 3
Also referred to as CD-ROM.

2 CD-ROM I
Compact Disk - Read Only Memory. Optical storage media
that holds approximately 600 Mbytes.
Also referred to as CD. B

A-4

C-

2 CHUM
Chart Updating Manual. A semiannual publication that
supplies modifications to published aeronautical charts.
Additional information is in the DEFINITIONS topic CHUM.

2 CLUT
Color Lookup Table. Used to determine the closest 8-bit
color in the color palette for a given 24-bit (red, green,
blue) value.

2 CN
Color Normalization. A color preserving technique that is
used to build the spatial compression codebook. During CN,
compression codewords are selected based on the normalized
use of each of the codeword's four colors in the color
compressed image.

2 CNC
Compressed Nautical Chart. A 2-bits per pixel version
of nautical ADRG, stored in Tessellated Spheroid projection
for use in mission planning systems and Digital Moving
Map Systems. CNC format is identical to Compressed
Aeronautical Chart format. The resolution is 128 pixels
per inch.

2 CRT
Cathode Ray Tube. A vacuum tube in which a hot cathode
emits electrons that are accelerated as a beam through a
relatively high voltage anode, further focused or deflected
electrostatically or electromagnetically, and allowed to
fall on a fluorescent screen.

2 CSVQ
Color and Spatial Vector Quantization. An iterative
technique for locating vector centroids that may be used to
color compress and then spatially compress an image.

2 DFAD
Digital Feature Analysis Data. A Defense Mapping
Agency database that consists of cultural features
(e.g., roads, metropolitan areas, major landmarks).

2 DFID
Digital Flight Information Data. Defense Mapping
Agency database.

2 DLMS
Digital Land Mass System. A database consisting of Digital
Terrain Elevation Data and Digital Feature Analysis
Data.

A-5

2 DMA
Defense Mapping Agency. The Defense Department's I
primary source of digital and analog maps and charts.

2 DMAAC 5
Defense Mapping Agency Aerospace Center.

2 DMS
Digital Moving Map System. Computer system on board
tactical aircraft that displays digital chart data and
selected overlays for in-flight navigation. |

2 DR
Distribution Rectangle. The minimum bounding rectangle in
geographic coordinates encompassing a geographic contiguous I
set of ADRG image data (that is, the bounding geographic
coordinates of the data on the ARC Digitized Raster
Graphics CD-ROM).

2 DTED
Digital Terrain Elevation Data. Defense Mapping Agency
standard elevation data set in which values are placed every I
3 degrees of latitude and longitude.

2 ECHUM 3
Electronic Chart Updating Manual.

2 EEPROM
Electronic Erasable Programmable Read-Only Memory.
Read-Only memory can be erased and reprogrammed as many
times as the user desires.

2 EQ
Equatorial (TS zone 2). The region of the earth bounded by
an upper latitude of +31.3846 and a lower latitude of 4
-31.3846.

2 FACS|
Feature Attribute Coding Standard.

2 FIPS
Federal Information Processing Standards. I

2 FIPSPUB
FIPS Publication. A publication released by the FIPS 3
committee.

2 FLIPS|
Flight Information Publications.

2 FRC
Fallon Range Chart (1:500K scale). I

A-6

2 GLCC
Global Loran Navigation and Planning Charts (1:5M scale).

2 GNC

Global Navigation and Planning Charts (1:5M scale).

2 HTI3 Horizons Technology, Incorporated. Developer of the Map,
Operator, and Maintenance Station (MOMS).

3 2 IS0
2 ISO International Standards Organization. An organization

formed to define standards. For example, IS08211 is the
standard for transfer of geographic information and IS09660
is the standard/format for CD-ROM data storage.

2 JNC3 Jet Navigation Chart (1:2M scale aeronautical chart).

2 JOG
Joint Operational Graphics (1:250K scale aeronautical
chart).

2 KNTCI Korean Navigation Training Chart. This chart is
available in two scales:

1:500K scale
1:lM scale

2 LCC
Loran-C Navigational Chart (1:3M scale).

2 MC&G
Mapping, Charting, and Geodesy. Topics within geography.I Divisional name of NRL, Code 7440.

2 MDFF
Map Data Formatting Facility. A project within NRL, Code
7441, that performs research, development, testing, and
evaluation in the fields of digital map data and image3 compression.

2 MEF
Maximum Elevation Figure. A value indicating the maximumI elevation within a certain area.

2 MO
Magneto-Optical Disk. Storage media used in the operator
portion of the Map, Operator and Maintenance Station.

w ~2 MOMS
2 MOMSMap, Operator and Maintenance Station. Developed by HTI.

* A-7

The Map Station portion is used in the MDFF to produce
Aircraft Optical Disks.

The Operator Station portion is used by mission planners
and permits addition of overlay data (threats, routes,
targets, etc.) to DMS via EEPROM device.

The Maintenance portion is used after flights to evaluate 3
aircraft performance.

2 MTE
3

Maximum Terrain Elevation. A value indicating the maximum
elevation within a certain area.

2 NOTAM 3
Notice to Airmen.

2 NP |
North Polar (TS zone 4). The region of the earth bounded by

an upper latitude of +90.0000 and a lower latitude of
+51.6923.

2 NT
North Temperate (TS zone 3). The region of the earth
bounded by an upper latitude of +51.6923 and a lower
latitude of +31.3846.

2 ODI
3

Optical Disk Image. An image file containing Red, Green,
and Blue data (along with related color lookup tables,
decompression codebooks, etc.) which resides on
codebooks, etc.), which resides on optical disk media
(e.g., WORM, MO, CD-ROM).

2 ONC 3
Operational Navigation Chart (1:1M scale aeronautical
chart).

2 PA I
Palette. There are 30 standard color palettes in the CAC
database. There is one palette for each scale and zone.
Each color palette contains 256 colors: 240 colors are used
for chart data and the other 16 colors are reserved for
geographic overlays.

2 PNTC
Philippines Navigational Training Chart. This chart is
available in two scales:

1:500K scale
1:1M scale _

A-8

* ~2 RGB
2 RGB Red - Green - Blue. A color scheme often used in color

display devices (e.g., color monitors and raster displays).

3 2 SEC
Sectional Aeronautical Charts (1:500K scale).

3*2 South Polar (TS zone 0). The region of the earth bounded by
an upper latitude of -51.6923 and a lower latitude of
-90.0000.

2 ST
South Temperate (TS zone 1). The region of the earthI bounded by an upper latitude of -31.3846 and a lower
latitude of -51.6923.

Z ~2 TLM
2 TLM Topographic Line Map (1:50K and 1:100K scale aeronautical

charts).

3 2 TPC
Tactical Pilotage Chart (1:500K scale aeronautical chart).

2 TS
Tessellated Spheroid. The map projection system in which
the Compressed Aeronautical Chart and the Compressed

|3 Nautical Chart are stored.

2 VFR3 Visual Flight Rules.

2 VFRTA
Visual Flight Rules Terminal Area Charts (1:250 scale).

2 VQ
Vector Quantization. Lossy compression method used by the3 MDFF to compress ADRG data.

2 WGS
World Geodetic System. A standard by which the earth's
geoid (elliptical shape) is measured.

2 WORM
Write Once, Read Many-times. An optical disk used to store
ODIs and intended for use in aircraft Digital Moving Map
Systems. A WORM can store approximately 240 Mbytes of3 chart data on each side.

2 YMC
Yellow-Magenta-Cyan. A color scheme often used by hardcopy
devices that deposit colored pigments onto paper (e.g.,

A-9

CalComp plotters).
2 ZDR I

Zone Distribution Rectangle. An ADRG image for a given ARC
zone.I

I

I

I

I

I

I

I
I

I

I

I-

I

I

A-10

I

APPENDIX B
TOPIC FILE ARCHIVE.HLP

Overview B-3
VIEW Datasets B-4
ADD Datasets B-5
DELETE Datasets B-6
ENDB-7

B-1

m a a a a a a a - - a a - a - a a m

TOPIC FILE: ARCHIVE.HLP

The following text and subtopics appear when Archive is selected as
an MDFFHELP topic:

Archive

Archive is a program that is used to display and maintain MDFF
archive data sets. MDFF archive data sets serve several
purposes including:

* Providing historical research data.
* Providing examples of significant features.
* Establishing data sets for base-line testing.
* Establishing data sets for demonstrations.

Additional information available:

Overview VIEWDatasets ADDDatasets
DELETEDatasets END

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 Archive
Archive is a program that is used to display and maintain MDFF
archive data sets. MDFF archive data sets serve several
purposes including:

* Providing historical research data.
* Providing examples of significant features.
* Establishing data sets for base-line testing.
* Establishing data sets for demonstrations.

2 Overview

Type the following command to execute the program:

RUN/NODEB MDFFEXE:ARCHIVE

Archive is menu driven. The main menu offers the following
options (which are described as subtopics).

VIEW: Displays the archive data set.
ADD: Adds new data into the archive data set.

B-3

DELETE: Deletes data from the archive data sets.
END: Ends (terminates) program execution.

An option is selected by using the arrow keys to highlight the
desired option and pressing <CR>.

The following restrictions apply to usage:
* The user must be logged onto a VAXstation running VAX/VWS to
VIEW archive data.

* Any computer may be used to ADD or DELETE archive data sets;
however, the user must be logged in under the CAC account.

2 VIEWDatasets

This main menu option is used to display archive data onto a
VAX/VWS workstation color monitor. The user must be logged onto
a VAXstation running VAX/VWS software in order to view archive
data sets.

* A submenu is displayed for data set selection. Submenu options
include CAC, CNC, or DLMS data sets (at present, only CAC is
implemented).

To select a CAC data set use the arrow keys to highlight the CAC
option and press <CR>.

* Once data set selection is made, another submenu, which requests
data type selection, is displayed. Submenu options include:

BADCODEBOOK:

DESERT-AREA:
DIFFPALETTE:

END:
HIGHDISTORTION:

METRO-AREA:
MOUNTAIN-AREA:

NOARLCOMPRESSION:

PC-ANOMALY:

PREVIOUS MENU:
TEST SET:

WATER_AREA:

Selects data sets compressed using bad or
inappropriate codebooks.
Selects data sets covering desert areas.
Selects data sets using nonstandard color
palettes.
Terminates program execution.
Selects data sets containing high distortion
values.
Selects data sets covering metropolitan areas.
Selects data sets covering mountain areas.
Selects data sets processed using NRL's
(formerly the Naval Oceanographic and
Atmospheric Research Laboratory, or NOARL)
compression method.
Selects data sets containing paper chart
anomalies (e.g., folds, creases).
Returns control to the previous menu.
Selects test data sets.
Selects data sets covering water areas.

* Once the data type selection is made, another submenu which
requests scale and zone selection, is displayed. Options for

B-4

I
I
I

I

I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

every map scale and zone are included (e.g., TLM NP, TPC NT,
JNC EQ).

Select the appropriate scale and zone for the desired archive
data set by using the arrow keys to highlight and pressing <CR>.

The selected archive data will now be displayed. Type <-Y> or
<AC> when finished viewing (this will return you to the last sub-
menu).

Another archive data set may be selected for viewing, or you may
select one of the following options:

PREVIOUS-MENU to return to the previous menu
END to end the session.

2 ADDDatasets
This main menu option adds new data into the archive data set. The
user must be logged in with the CAC account in order to use this
option. Only compressed data can be added to the archive data
set. The addition is performed by copying compressed data from
a current processing thread to the archive data set area.

* A submenu is displayed for data set selection. Submenu options
include CAC, CNC, or DLMS data sets (at present, only CAC is
implemented).

To select a CAC data set use the arrow keys to highlight the CAC
option and press <CR>.

* Once data set selection is made, another submenu which requests
data type selection is displayed. Submenu options include:

BADCODEBOOK:

DESERT-AREA:
DIFFPALETTE:

END:
HIGHDISTORTION:

METRO-AREA:
MOUNTAIN-AREA:

NOARLCOMPRESSION:

PCANOMALY:

PREVIOUS MENU:
TEST SET:

WATER AREA:

Selects data sets compressed using bad or
inappropriate codebooks.
Selects data sets covering desert areas.
Selects data sets using nonstandard color
palettes.
Terminates program execution.
Selects data sets containing high distortion
values.
Selects data sets covering metropolitan areas.
Selects data sets covering mountain areas.
Selects data sets processed using NRL's
(formerly the Naval Oceanographic and
Atmospheric Research Laboratory, or NOARL)
compression method.
Selects data sets containing paper chart
anomalies (e.g., folds, creases).
Returns control to the previous menu.
Selects test data sets.
Selects data sets covering water areas.

B-5

1,.

r,,
lz::

* Once the data type selection is made, another submenu which
requests scale and zone selection, is displayed. Options for
every map scale and zone are included (e.g., TLM NP, TPC NT,
JNC EQ).

Select the appropriate scale and zone for the desired archive
data set by using the arrow keys to highlight and pressing <CR>.

* Specify the input processing thread (e.g., A5B), color palette
number (e.g., 133), and lower left-hand row/column numbers of
the data to be added.

Addition takes about 1 minute, then the prompt returns to the
last submenu.

2 DELETEDatasets
This menu option is used to delete data from the archive data set.
The user must be logged in with the CAC account in order to use
this option.
* A submenu is displayed for data set selection. Submenu options

include CAC, CNC, or DLMS data sets (at present, only CAC is
implemented).

To select a CAC data set use the arrow keys to highlight the CAC
option and press <CR>.

* Once data set selection is made, another submenu, which requests
data type selection, is displayed. Submenu options include:

BADCODEBOOK:

DESERT AREA:
DIFF_PALETTE:

END:
HIGHDISTORTION:

METRO AREA:
MOUNTAIN AREA:

NOARLCOMPRESSION:

PC-ANOMALY:

PREVIOUS MENU:
TEST SET:

WATER AREA:

Selects data sets compressed using bad or
inappropriate codebooks.
Selects data sets covering desert areas.
Selects data sets using nonstandard color
palettes.
Terminates program execution.
Selects data sets containing high distortion
values.
Selects data sets covering metropolitan areas.
Selects data sets covering mountain areas.
Selects data sets processed using NRL's
(formerly the Naval Oceanographic and
Atmospheric Research Laboratory, or NOARL)
compression method.
Selects data sets containing paper chart
anomalies (e.g., folds, creases).
Returns control to the previous menu.
Selects test data sets.
Selects data sets covering water areas.

B-6

I
I
I

I

I

I
I

I
U

I

I

I

I
I

I
I
I

I

I

* Once the data type selection is made, another submenu which
requests scale and zone selection, is displayed. Options for
every map scale and zone are included (e.g., TLM NP, TPC NT,
JNC EQ).

Select the appropriate scale and zone for the desired archive
data set by using the arrow keys to highlight and pressing <CR>.

* A prompt will ask if you are sure you want to delete a dataset.
The data will be deleted when "Yes" is entered, otherwise the
data will NOT be deleted.

Control returns to the last submenu.

2 END
Terminates program execution.

B-7

a - a a a a a a - a a a a a a a a a a

* APPENDIX C
TOPIC FILE BITMAPS.HLP

File-Names C-3

Summary_Files C-4

_ ~~~~~~~~~~C-1

m - a a a a a a a a a a a a a a a a -

C .

C

TOPIC FILE: BITMAPS.HLP

The following text and subtopics appear when Bitmaps is selected as
an MDFFHELP topic:

The following text comprises this KDFFEELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 Bitmaps
Bitmaps are used by certain programs within the MDFF software
suite. All bitmap files are stored in the directory
MDFFSYSTEM:[BITMAPS) and have the same format.

Bitmap format uses the first 16 bytes (first 4 longwords)
to contain the minrow, mincol, maxrow, and maxcol
of the data that are being described. All remaining bytes
contain the actual 1 and 0 values.

2 File Names
The file naming convention for the different types of bitmaps are
as follows:

Type: CAC Bitmaps

Name: a_b_c.TEMPLATE;d

a = CDID

b = SCALE

Extracted from the CAC CD-ROM

Chart scale

C-3

Bitmaps

Bitmaps are used by certain programs within the MDFF software
suite. All bitmap files are stored in the directory
MDFFSYSTEM:[BITMAPS] and have the same format.

The Bitmap format uses the first 16 bytes (first 4 longwords)
to contain the minrow, mincol, maxrow, and maxcol
of the data that are being described. All remaining bytes
contain the actual 1 and 0 values.

Additional information available:

File-Names Summary_Files

where

..

Example:

Type:

Name:

where

Example:

Type:

Name:

where

c = ZONE 0-4 possible TS zones

d = VERSION VAX/VMS file version number

CD-1991-A-MAP2-10007_2_3.TEMPLATE;1

Generic Bitmaps

a_b_c.TEMPLATE;d

a = Bitmap name Determined by the user

b = SCALE Chart scale

c = ZONE 0-4 possible TS zones

d = VERSION VAX/VMS file version number

MY BITMAP_2_2.TEMPLATE;l

AOD Template Bitmaps

a_b c d.TEMPLATE e;f

a = AOD name Determined by the user

b = SIDE A, B, or C possible sides
(Note: Side C denotes both side A and B)

c = SCALE Chart scale

d = ZONE 0-4 possible TS zones

e = Subdir Number 1-3 possible subdirectories

f = VERSION VAX/VMS file version number

Example: ALASKAN A-3 4.TEMPLATE_1;l

2 SummaryFiles
Also contained in the MDFFSYSTEM:[BITMAPS] directory are the AOD
template summary files. These files contain, in ASCII format,
information about a given AOD's template.

The file naming convention for these summary files are as follows:

Type: AOD template summary files (ASCII File)

C-4

I

Name: a.LIS;b
where

a = AOD name

b = VERSION

EXAMPLE: ALASKAN.LIS;1

Determined by the user (usually the
same name as the AOD being summarized)

VAX/VMS file version number

C-5

I
I

I
I
I
I

I
I

I

I
I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

U

I

I

I

I

I

I

I

I

APPENDIX D
TOPIC FILE CAC PROCESSING.HLP

Overview . . .
INITIALIZATION
PASS1
PASS2
PASS3A . . .
PASS3B
WRAPUP
BUILDISOIMAGE .
Display_Programs
Segment Files . .
Status-Files . .

.

.: . . .
..

.: ,.

.:

.

.

.

.

.

. D-3
*.D-4

D-4
D-4
D-4
D-4
D-5

.. D-5
D-5
D-5

. D-7

D-1

I

I

TOPIC FILE: CACPROCESSING.HLP

The following text and subtopics appear when CACProcessing is
selected as an KDFFHELP topic:

CACProcessing

This topic covers the processing of CAC data. Both the CAC
and CNC have the same source data format, ADRG. Thus, their
processing steps are very similar.

See the CNCSpecifics topic for CNC specific information.

Additional information available:

Overview INITIALIZATION PASSl PASS2 PASS3A
PASS3B WRAPUP BUILD ISO IMAGE DisplayPrograms
SegmentFiles StatusFiles

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 CACProcessing

This topic covers the processing of CAC data. Both the CAC and
the CNC have the same source data format, ADRG. Thus, their
processing steps are very similar.

See the CNCSpecifics topic for CNC specific information.

2 Overview

Interfacing with CAC processing is conducted through the
user interface CHARTCONTROL. CHARTCONTROL sets control
information in various status files (see StatusFiles) that is
in turn interpreted by the PROCESSCHART program.

A general overview of the processing steps is shown below:

COMPRESSED CHART
CORE

INITIALIZATION---ADRG--[PASS1]-- FILLED SEGMENTS -----\ ~~~~~~/
EDGE -- [PABS2]--

UNFILLED SEGMENTS -----

D-3

COMPRESSED
CHART

t- PASS3A] --- I_ \~~~~~~~~~~
COMPRESSED

CHART
-------------------… [PASS3B]-----I--------IWRAPUP]---- ODI IMAGE

GENERATION]

I
2 INITIALIZATION

Beginning with the CHARTCONTROL INITBUILD option, a process
thread is created, logical names are built, and the generic
processing queue is established.

2 PASSi I
Beginning with the CHART ODI STARTPASS1 option, PASSl
attempts to build codebook procedures and to compress all I
CORE segments.

CHART ODI options SELECTREADERS and VALIDATE-READERS are I
used to begin processing ADRG data from CD-ROM for inclusion
into a CAC.

2 PASS2 I
Beginning with the CHARTODI START PASS2 option, PASS2
attempts to fill remaining UNFILLED EDGE segments.
Due to lack of data, it may not be possible to fill all
EDGE segments. UNFILLED segments are compressed in PASS3B.

CHART ODI options SELECT READERS and VALIDATE-READERS are
used for reading ADRG data from CD-ROM.

2 PASS3A I
Beginning with the CHART ODI STARTPASS3 option, PASS3
builds codebooks for and compresses FILLED segments from I
PASS2 (or PASS1 when PASS2 in not performed).

2 PASS3B

Compresses failed codebook segments from PASS3A and any
remaining UNFILLED segments (e.g. outer EDGE segments).
There are CHART ODI options for chart build processing I
to pause, stop, resume, and recover.

D-4

2 WRAPUP

Determines palette boundaries, and creates CD Coverage,
Palette Coverage, Area Source, and Area DR files. Deletes
extraneous files.
CHARTCONTROL option STARTCHART WRAPUP performs these
actions.

2 BUILDISOIMAGE

Creates an ISO 9660 Image from applicable files.
CHARTCONTROL option STARTISOIMAGEBUILD performs this
action.

After generation, the ISO 9660 image is copied to magnetic tape
and sent to the mastering facility (to be produced as a
CD-ROM). The command file that performs tape initialization and
file copy is located at and named

MDFFEXE:CHARTISOIMAGE TO TAPE.COM

2 Display_Programs

Programs are available for displaying data on workstations
(VAX/VWS, VAX/GPX, and IVAS) and hardcopy devices. These
programs are described in the CAC PROGRAM DESCRIPTIONS topic.

2 SegmentFiles

Naming conventions for downsampled and compressed files have been
established. Each convention is described as a subtopic.

3 DownsampledSegments

Downsampled segment files use the following naming convention:

directory:[Rsnnnnn]12345678.90z

The "directory" will usually be "CHARTSEGMENTS".

For codebook repair, the string "directory:["
is replaced by the string "MDFFSCRATCH:[CB_REPAIR."

Note the placement of the periods and brackets, they are
significant!

The "s" is the sign of the row number. "0" for positive,
"1" for negative.

The "nnnnn" is the row number to five whole digits.

The "12345678" is the first eight digits of the key name,

D-5

which is computed from the row and column numbers.

The "90" is the last two digits of the key name computed
from the row and column numbers.

The "z" is the TS zone number (0 through 4). I
4 Examples
For a downsampled segment on row 130 and column -378 in the I
equatorial zone (TS zone 2):

The segment is stored in the current processing thread's area for
downsampled data with directory and file names:

CHARTSEGMENTS:[R000130]01552137.532

The segment is stored in the current processing thread's area for
codebook repair with directory and file names: I

MDFFSCRATCH:[CBREPAIR.R000130]01552137.532

3 CompressedSegments
Compressed segment files use the following naming convention:

CHARTODIDISK:[MAPx.PAkkkkmm.Rsnnnnn]12345678.90z

For codebook repair, the string "CHART ODIDISK:[MAPx.PAkkkkmm." I
is replaced by the string "MDFF SCRATCH:[CB REPAIR."

Note the placement of the periods and brackets, they are
significant!

The "x" is the TS scale (0 through 5).

The "kkkk" is the palette (i.e., PA) number of the palette used to
compress this data.

The "mm" is an arbitrary sequence number assigned to each palette
subdirectory. The order is dependent on the order that the
palette subdirectories are created (ie. first: 01, second: 02, I
third: 03, and so on).

The "s", "nnnnn", "12345678", "90" and the "z" are the same as the
downsampled filenames. I

4 Examples
For a compressed segment on row 130 and column -378 in the
equatorial zone (TS zone 2):

D-6

Il

The data is stored in the current processing thread's area for
compressed data with directory and file names:

CHARTODIDISK:[MAP3.PA01300l.R000130]01552137.532

The data is stored in the current processing thread's area for
codebook repair with directory and file names:

MDFFSCRATCH:[CBREPAIR.R000130]01552137.532

2 StatusFiles

Status files are used to provide current information about
CD-ROM readers and CAC processing.

The availability of CD-ROM readers is provided through the file
CDREADERSTATUS.DAT.

The various stages of CAC processing are controlled by the
status files: CHARTSTATUS.DAT and CODEBOOKSTATUS.DAT.

The CHARTSTATUS.DAT file is the master control file. It
contains a header record and one status record for each ADRG
CD-ROM input for processing.

A CODEBOOK STATUS.DAT file is used to log information
pertaining to the codebook build/compression phase of PASSI
and PASS3A. There is one of these for each ADRG CD-ROM and
one for each PA processed in PASS3A.

3 CDREADERSTATUS

This file resides in the MDFF SYSTEM:(DATA) directory and is
accessed through the SHOW_CDREADER_STATUS utility. Updates are

made when one of the following statements is true:

A CD reader is mounted using the MOUNT CDROM utility
A CD reader is dismounted using the DISMOUNTCDROM utility

For proper operation and maintenance, it is imperative that the
MOUNT_CDROM and DISMOUNT-CDROM utilities be used.

3 CHARTSTATUS

This file resides in the MDFFSCRATCH:[000000] directory for
the current processing thread. The file format is described
in the file MDFFEXE:CHART STATUS.INC.

D-7

4 Header Record

These are the mnemonics, with their values, for fields in the
header record which are used to control CAC processing.

Values for "PROCESSINGSTATE":

NOOP 0 |
INITIALIZINGBUILD 1
PASS1 IN PROGRESS 2
PASS2 IN PROGRESS 3
BUILDING SEGMENT LISTS 4 I
BUILDING PASS3A PROCS 5
BUILDINGPASS3A CBS 6
BUILDING PASS3B PROC 7 I
COMPRESSING PASS3B SEGMENTS 8
BUILDING ID DIR FILES 9
BUILDINGCHARTISOIMAGE 10

Values for "LASTPHASECOMPLETED":

NO OP 0 1
BUILDINITIALIZED 1
PASS1_COMPLETE 2
PASS2 COMPLETE 3
SEGMENT LISTS BUILT 4
PASS3APROCS BUILT 5
PASS3A CBS COMPLETED 6
PASS3B PROC BUILT 7 I
PASS3BSEGMENTS COMPRESSED 8
ID DIR FILESBUILT 9
CHART_ISO IMAGE BUILT 10
CHART_BUILDCOMPLETE 11

Values for "CONTROL":

NO OP 0
CHART BUILD INIT 1 *
CHART BUILD PASS1 2
CHART BUILD PASS2 3
CHARTBUILDPASS3 4
CHART BUILD_PASS3 CONT 5
CHART BUILD WRAPUP 6
CHART BUILD ISO IMAGE 7
CHART BUILD RESUME 8
CHARTBUILDPAUSE 9

4 StatusRecord I
These are the mnemonics, with their values, for fields in the
header record which are used to control CAC processing. I

D-8

Values for "PROCESSINGSTATE":

NO OP 0
READING ADRG 1
DOWNSAMPLING ADRG 2
BUILDING ADRG CB PROCS 3
SUBMITTING ADRG CB_PROCS 4
BUILDINGADRGCBS 5

Values for "LAST COMPLETED PHASE:

NO OP 0
ADRGREAD 1
ADRGDOWNSAMPLED 2
ADRGCB PROCS BUILT 3
ADRG CB PROCS SUBMITTED 4
ADRG CBS BUILT 5
CD COMPLETE 6
TOBEREPROCESSED 7

Values for "LEGENDSTATUS":

NO OP 0
LEGEND START 1
LEGEND PROCESSING 2
LEGEND FINISHED 3
LEGENDCOMPLETE 4

3 CODEBOOKSTATUS

This file resides in the MDFF SCRATCH:[CDmnnnnn] directory for
the "nnnnn" ADRG CD-ROM being processed. The file format is
described in the file MDFFEXE:CODEBOOKSTATUS.INC.

D-9

m m am a a a a - - a a - a a a a

APPENDIX E
TOPIC FILE CACPROGRAMDESCRIPTIONS.HLP

Overview

ALGEBRAIC REMAP
ALG PAL BUILD DRIVER
BUILD PASS1 PROCEDURES . . .
BUILDPASS3A PROCEDURES . . .
BUILD PASS3B PROCEDURES . . .
CBREPAIRIVAS
CHART CONTROL
CHECK CDREADER STATUS DRIVER
CLEARCDREADERSTATUSDRIVER
DECODEKEY
DELETEPADIRDRIVER . . .
Display_Programs

Overview
DISPLAY ADRGIVAS . . .
DISPLAY CAC_IVAS
DISPLAY CACPORTABLE . .
DISPLAY CAC VWS
MAPSTATION_ RIVER . . .
PLOTCDS_VWS . . .
PLOTODI

DOWNSAMPLE_CD
DS SEGS
DUMP CODEBOOK STATUS
DUMPCOLPALDB
DUMPDS SEGMENTS
ENCODEKEY
FINDCDSTATUS
LIST CHART STATUS
PROCESS CHART
READADRGDATA
SHOWCDREADER STATUS
TEK
TRIMODISTRUCT

.. E-3
.......... E-5

E-7
E-9

.. E-9
E-9
E-9

.. E-12
E-12
E-13
E-13
E-13

.....*. E-14

E-18
E-19
E-21

.. E-22
. E-28
. E-29
. E-32

E-32
E-35
E-36

.. E-36
.. E-37

. E-37
... E-38

E-41
E-41

.. E-41
E-41

.. E-45

E-1

I

TOPIC FILE: CACPROGRAMDESCRIPTIONS.HLP

The following text and subtopics appear when CAC ProgramDescriptions
is selected as an MDFFHELP topic:

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 CACProgramDescriptions
This topic contains functional descriptions of executable
images. All executable images are located in the directory
named MDFFEXE.

For more detailed information about these programs, see
topic CACSOURCECODE.

2 Overview
A variety of executable images are used in CAC data processing.
Brief functional descriptions of these images follow.

ALGEBRAIC REMAP: Uses a given CAC color palette and
individual RGB shades to produce
an algebraic color palette.

ALGPALBUILDDRIVER: Builds algebraic palettes for very

E-3

-. ,

CACProgramDescriptions

This topic contains functional descriptions of executable
images. All executable images are located in the directory
named MDFFEXE.

For more detailed information about these programs, see
topic CACSOURCECODE.

Additional information available:

Overview ALGEBRAIC REMAP ALG PAL BUILD DRIVER
BUILDPASS1 PROCEDURES BUILD PASS3A PROCEDURES
BUILDPASS3B PROCEDURES CB REPAIR IVAS
CHARTCONTROL CHECK CDREADER STATUS DRIVER
CLEARCDREADERSTATUSDRIVER DECODEKEY DELETE PA-DIRDRIVER
DisplayPrograms DOWNSAMPLE CD DSSEGS
DUMP CODEBOOK STATUS DUMP COLPAL DB DUMP DS SEGMENTS
ENCODEKEY FIND CD STATUS LIST CHART STATUS
PROCESSCHART READ ADRG_DATA SHOWCDREADER STATUS
TEK TRIMODISTRUCT

I
large scale data.

BUILDPASS1_PROCEDURES:

BUILDPASS3APROCEDURES:

BUILD PASS3B PROCEDURES:

CBREPAIRIVAS:

CHARTCONTROL:

CHECKCDREADERSTATUSDRIVER:

CLEARCDREADERSTATUSDRIVER:

DECODEKEY:

DELETE PA DIR DRIVER:

DisplayPrograms:

DOWNSAMPLE CD:

DSSEGS:

DUMP CODEBOOK STATUS:

DUMPCOLPAL DB:

Builds command files for codebook
generation/data compression.

Builds command files for FILLED
segment codebook/compressions.

Builds command file for UNFILLED
segment compression and for failed
PASS3A codebook compressions.

Repairs segments using the
appropriate compression method
(Honeywell or NRL)
and the IVAS monitor for display.

User interface to CHART ODI
processing.

Checks the availability of a CD-ROM
reader. Is used by the MOUNTCDROM
utility

Clears the status of a CD-ROM reader
to make the reader available for
use. Is used by the DISMOUNTCDROM
utility.

Decodes a segment key into a set of
row/column numbers.

Deletes an entire palette (PA)
directory, for specific TS zone.

A suite of programs is available for
displaying data on workstations and
hardcopy devices.

Converts input ADRG data from the
ARC projection system to the TS
projection system.

Downsamples TS segments from ADRG
data that are stored on CD-ROM.

Lists information about the
codebooks for a specific CD-ROM or
palette.

Lists information about each color
palette.

E-4

I1

I
I

I
I

,

I
I

I
I

'I

I

I

I

DUMPDSSEGMENTS:

ENCODEKEY:

FINDCDSTATUS:

LISTCHARTSTATUS:

PROCESS-CHART:

READADRGDATA:

SHOW CDREADER STATUS:

C

r-7

4~,

r-..
r7

Lists information about the
downsampled segments of a CD.

Encodes a set of row/column numbers
into a key, which is used to name a
segment file.

Checks all processing threads for
the UNAVAILABILITY of CD-ROM
readers.

Lists contents of the current or
specified processing thread's
CHART-STATUS file.

Used as a continuing process that
monitors and maintains CHART ODI
processing.

Copies ADRG data from CD-ROM to
magnetic disk.

Displays the status of CD-ROM
readers, availability and owner
process names (for unavailable
readers). Used by the
SHOWCDREADER STATUS utility.

TEK: Prints file with extensions TEK and
IMAGE on the TEKTRONIX printer.

TRIMODISTRUCT: Moves designated compressed and
downsampled segments from a specified
processing thread into a trim
directory.

2 ALGEBRAICREMAP
Takes a CAC color palette (e.g., MDFFSYSTEM:[COLPAL)PAOxxx.PALETTE)
that has been supplied as input and applies individual RGB shade
levels to remap the CAC palette's colors into the closest
corresponding algebraic values. The RGB shade levels (e.g. red=8,
green=6, blue=5 ==> 8x6x5 = 240 colors) are used to divide RGB
space into small cubes. The centroid value of each cube is then
compared with the input palette's values. The closest centroid
value (in euclidean distance) replaces each input palette color.

This program is used for remapping CAC palettes into lower color
levels. For example, entering RGB shades of 4,4,4 will remap a
240 entry color palette into 64 colors. The output palette can
then be used to display CAC data at this lower color resolution.

E-5

ALGEBRAICREMAP is invoked using the following syntax:

$ RUN/NODEB V2_DIR:ALGEBRAICREMAP

3 Input

ALGEBRAIC REMAP issues the following input prompts.

CAC palette disk name

CAC directory path

Palette filename

Enter the symbol or name of the
device containing the input CAC palette
file. For example, MDFFSYSTEM

Enter the symbol or directory path for
the directory containing the input CAC
palette file. Brackets must not be
included. For example, COLPAL

Enter the CAC palette file name.
For example, PAOxxx.PALETTE
where xxx is a palette ID number.

The following prompts are used to obtain RGB shade levels.
Note that RxGxB input values cannot exceed 240 (i.e., only 240
possible colors can be created).

I
I

I
I

I

Red shades

Green shades

Blue shades

Enter an integer to represent a RED
shade
Enter an integer to represent a GREEN
shade.
Enter an integer to represent a BLUE
shade.

The user is also prompted for an output path name and names for
the output (algebraic) colormap, palette, and color conversionfiles.

Output disk name

Output directory path

Enter the symbol or name of the device
to contain the output files.
For example, MDFFSYSTEM

I

IEnter the symbol or directory path for
the directory to contain the output
files. Brackets must not be included.
For example, COLPAL

U

Algebraic palette filename Enter the algebraic palette file name
using the CAC palette format.
For example, PAOxxx.PALETTE
where xxx is a palette ID number.

Algebraic colormap filename Enter the algebraic colormap file name

I1-

E-6
I

I

II

I

I

I

I
I

using the CAC colormap format and .DAT
extension. For example, PAOxxx.DAT
where xxx is a palette ID number.

Color conversion filename Enter the conversion file name using
using the CAC colormap format and .CNV
extension. For example, PAOxxx.CNV
where xxx is a palette ID number.
This file is used to remap 24-bit
color values to 8 bit.

3 Output
Program output consists of the following files, each of which is
written on the device and directory that were specified as
program input.

Algebraic palette file

Algebraic colormap file

Color conversion file

The algebraic palette file name
uses the CAC palette format.
For example, PAOxxx.PALETTE
where xxx is a palette ID number.

The algebraic colormap file name
uses the CAC colormap format and .DAT
extension. For example, PAOxxx.DAT
where xxx is a palette ID number.

The conversion file name using
the CAC colormap format and .CNV
extension. For example, PAOxxx.CNV
where xxx is a palette ID number.
This file was used to remap 24-bit
color values to 8 bit.

2 ALGPALBUILDDRIVER
This program is used to build algebraic palettes for very large
scale data sets where standard color palette builds are
impractical. Familiarity with color mechanics and RGB space is
assumed.

The algebraic palette that is built is based on RGB shade levels
that are supplied as program input. For example, using inputs
where Red=8, Green=6, and Blue=5, will produce (8 x 6 x 5), or 240
distinct colors. The shade levels are used to divide RGB space
into small "boxes," where the centroid value of each box is used
as a color palette entry.

The length of each box on an axis of RGB space is computed using
each shade level where:

box length = (total number of colors) / shade level

E-7

Hence, box length in RGB space for the red axis = 256/8; for the
green axis = 256/6; and for the blue axis = 256/5.

The centroid value is simply half the value of the length of the
box in RGB space. Hence,

the red axis = (256/8) / 2 = 16
the green axis = (256/6) / 2 = 21
the blue axis = (256/5) / 2 = 26

3 Input
The following prompts are used to obtain RGB shade levels. Note
that (Red x Green x Blue) input shade levels cannot exceed 240
(i.e., only 240 colors can be created).

Red shade

Green shade

Blue shade

Enter an integer to represent a RED
shade level.
Enter an integer to represent a GREEN
shade level.
Enter an integer to represent a BLUE
shade level.

The user is also prompted for an output device name, path name and
names for the algebraic palette, colormap, and color conversion
files.

Output disk name Enter the symbol or name of the device
to contain the output files.
For example, MDFF SYSTEM

Output directory path Enter the symbol or directory path for
the directory to contain the output
files. For example, COLPAL

Algebraic palette filename

Algebraic colormap filename

Color conversion filename

Enter the algebraic palette file name
using the CAC palette format.
For example, PAOxxx.PALETTE
where xxx is a palette ID number.

Enter the algebraic colormap file name
using the CAC colormap format and .DAT
extension. For example, PAOxxx.DAT
where xxx is a palette ID number.

Enter the conversion file name using
using the CAC colormap format and .CNV
extension. For example, PAOxxx.CNV
where xxx is a palette ID number.
This file is used to remap 24-bit
color values to 8 bit.

E-8

'I

I
I
I

I

I
I

I

I

I

'I

I
I. .

I
I
I

I

I

C-

3 Output r-
Program output consists of the following files: the algebraic
palette, algebraic colormap, and a color conversion file. Each of
these files is described below. -

Algebraic palette file

Algebraic colormap file

Color conversion file

The algebraic palette file name
uses the CAC palette format.
For example, PAOxxx.PALETTE
where xxx is a palette ID number.

The algebraic colormap file name
using the CAC colormap format and .DAT
extension. For example, PAOxxx.DAT
where xxx is a palette ID number.

The conversion file name using
using the CAC colormap format and .CNV
extension. For example, PAOxxx.CNV
where xxx is a palette ID number.
This file is used to remap 24-bit
color values to 8 bit.

These output files are stored in binary format and may be read
using the "C" functions that are located in CACUTILS.C:
READPALETTE.C, READCOLORMAP.C, and READCOLORCONVERSION.C.

2 BUILDPASS1_PROCEDURES
Constructs PASSI codebook build/compression procedures for CORE
segments and creates/modifies the related CodebookStatus
file. The Codebook Status File contains an entry for every
build request that was generated. Codebooks are generated using
9 of 25 CORE segments.

2 BUILDPASS3APROCEDURES
Constructs PASS3A codebook build/compression procedures for
FILLED (EDGE) segments and creates/modifies the related
CodebookStatus File. The CodebookStatus File contains an
entry for every build request that was generated.

Builds PA codebooks using nine (of nine) segments.

2 BUILDPASS3B_PROCEDURES
Constructs all codebook build/compression procedures for
UNFILLED (EDGE) segments and for failed PASS3A codebook
compressions.

Uses the nearest segment's codebook method for compression.

2 CBREPAIRIVAS
Determines the compression type of the data to be repaired and,

E-9

using the appropriate compression method, repairs it. The two
compression methods are Honeywell and NRL.

Bad segments are identified during the review process and are
downsampled into the CBREPAIR area for repair. CBREPAIRIVAS
displays the bad segment on the IVAS monitor and uses a codeb~ook,
from a preselected segment, to again (via appropriate method)
compress the downsampled data. The result is displayed, and if
acceptable, written to the CHARTODIDISK area replacing the bad
segment.

3 Input output
The following inputs are required during program execution:

Enter the chart scale (0,1,2,3,4,5)
Enter the zone (0,1,2,3,4)
Enter the palette number
Enter CD number
Enter the row and column number (of the segment) to repair
Enter the row and column (of a segment) to use for a
codebook
Does image pass (YIN)?.

Outputs: If the newly compressed segment image is acceptable, it
is written to the CHARTODIDISK area and is used to
replace the previous bad segment.

3 Required_-Subroutines
The following routines are required for program execution.

CBREPAIR IVAS:
H CB REPAIR:
N CBREPAIR:

READER:
COMPRESSSEGNOARL:

GET CAC DATA 24 BIT:

GETINFO:

MAKEDSNAMES:

GET DS DATA:
PUUTIMAGE:

MAKEODISEGNAME:

GETCODEBOOK:

DISPLAY CODEBOOK:

UNPACK CAC:

Driver program for repair subroutines.
Honeywell compression repair module.
NRL compression repair module.
Module to read a downsampled data file.
Module to compress a segment via NRL
compression.
Module to read 1 CAC segment and
decompress it to 24 bits.
Module in NRL compression to prompt user
for input.
Module to make the downsampled file names
for the READER module.
Module to get 24-bit downsampled data.
Module to put a 256 x 256 image onto the
IVAS screen.
Module to make the CHARTODIDISK segment
name.
Module to get and decompress a segment
codebook.
Module to display a codebook on the IVAS
monitor.
Module to unpack or decompress a CAC

E-10

J
I
I

'I

I

I

I

i
I

'I

I

I

I

I'

1

I

PRINTIO:

NOARL TEKPRINT:

segment.
Module to print a image on the TEKTRONIX
printer.
Translation driver for the TEKTRONIX
printer.

2 CHART CONTROL
The CHARTCONTROL program is the main user interface for
Version 2 CAC processing. This is a menu driven program. To
select a function, use the arrow keys to highlight the desired
function, then hit <CR>. To exit a menu (function) with no
action taken, type <CTRLZ>.

FUNCTION ACTION

STARTPASS1

STARTPASS2

STARTPASS3

CONTPASS3

CHART WRAPUP

SELECTREADERS

VALIDATEREADERS

Enables the processing of ADRG CD-ROMs for
PASS1.

Enables the processing of ADRG CD-ROMs for
PASS2.

Begins PASS3 processing phase. Builds the
following files: UNFILLED SEGMENTS.DAT,
FILLEDSEGMENTS.DAT, and SEGMENTS.DAT. A
mail message is sent to notify operators
that the program DISPLAYSEGMENTS must be
run in order to check the validity of these
files.
Continues PASS3 processing by building and
submitting codebook build/compression
procedures for FILLED segments (PASS3A).
Finally, UNFILLED segments and those
segments remaining after PASS3A, are
compressed using nearest segment's codebooks
(PASS3B).

Builds [ID) directory files and adds ODI
information (i.e., inventory of processed
ADRG CDs used to build the CAC) to the file
named MDFF.DBASE.

Select the previously validated ADRG
CD-ROM(s) for processing. This phase adds
the selected CD-ROM(s) to the CHARTSTATUS
database.

Validate the input ADRG CD-ROM(s). Ensure
that the CD-ROM is the right scale and area
for inclusion into the current build. This
phase only displays the CD-ROM contents. No

E-11

C

(-7

action is taken on the validated CD-ROM, the
option SELECTREADERS adds this data.

RECOVERBUILD

MISCELLANEOUS

PAUSEBUILD

RESUMEBUILD

INITBUILD

STOPBUILD

Recovers interrupted processing. For
phases PASS1 and PASS3, CHARTSTATUS entries
in downsampling phase can be started either
"cold" (i.e., from the very beginning) or
"warm" (i.e., from where processing was prior
to the interruption). CHART STATUS entries
previously submitted for building codebooks
are resubmitted to processing queues as are
entries that were not successfully completed
prior to the interrupt.

Miscellaneous functions to modify the
CHARTSTATUS database for the current build.
Pauses CHART processing for the currently
selected processing thread.

Resumes CHART processing for the currently
selected processing thread.

Initialize the CHART processing system for
an ODI build.

Stops CHART processing for the currently
selected processing thread.

I

I

I
I

'I

I
I

II

2 CHECK CDREADERSTATUSDRIVER
This program checks and updates the availability of a CD-ROM
reader. It is executed through the MOUNTCDROM DCL symbol.

I

51
MOUNTCDROM executes a command file, named MOUNTCDROM.COM,
which invokes CHECKCDREADERSTATUSDRIVER.

The CDREADER STATUS file contains an availability status for
each CD-ROM reader. The MOUNT CDROM utility checks CD-ROM
reader availability by reading the CDREADER STATUS file. If a
specified CD-ROM reader is available for use, the CD-ROM reader
is allocated and mounted and the status in CHARTSTATUS is
updated to show the reader as being unavailable for use.
Therefore, it is imperative that the MOUNTCDROM
utility be used for allocating and mounting CD-ROM readers.

I

I
I

Note: CD-ROM readers may be mounted as being a FOREIGN device
or an ISO image. I

2 CLEARCDREADERSTATUSDRIVER
This program clears the status of a CD-ROM reader (i.e.,
showing the reader as being available for use) and is executed I

E-12

I

I

through the DISMOUNTCDROM DCL symbol.

DISMOUNTCDROM executes a command file, DISMOUNT_CDROM.COM
which invokes CLEARCDREADERSTATUSDRIVER.

The CDREADER STATUS file contains an availability status for
each CD-ROM reader. The DISMOUNTCDROM utility updates the

CDREADER STATUS file to reflect changes in CD-ROM reader
availability. Therefore, it is imperative that DISMOUNT CDROM
utility be used for dismounting and deallocating CD-ROM
readers.

2 DECODEKEY
This program prompts for a segment's key. This key is decoded
to row and column numbers that are displayed as output.
Row and Column numbers are computed as follows:

row = mod [(key - 162018001),18001]
col = [(key - 162018001) - row / 18001)

2 DELETEPADIRDRIVER
Deletes an entire PA Directory, determined by the zone, for a
specific processing thread. Perform the following
steps to execute, the program:

* Set the processing thread for the data to be deleted.
* Type the command RUN/NODEB MDFFEXE:DELETEPADIRDRIVER

A message is displayed that advises the user to ascertain that
the current processing thread is the proper processing thread for
data deletion.

NOTE: ** This is very important - If the wrong processing thread
is set, the wrong data could be deleted. **

The user is then prompted for the zone of the data to be deleted.
All compressed segment data, contained within that zone, are
deleted. In addition, the PA directory and all underlying
subdirectories are deleted.

2 Display_Programs
This suite of programs displays data on a variety of devices.

3 Overview
This suite of programs displays data on a variety of devices.
Hence, device names are usually included as part of the program
name. Programs that display data on the International Imaging
Systems image processor, IVAS, include the name IVAS. Programs

E-13

I
that display data on a DEC VAXstation monitor, running VAX
Workstation Software (VWS), include the name VWS.

DISPLAYADRGIVAS:

DISPLAYCACIVAS:

DISPLAYCACPORTABLE:

DISPLAYCACVWS:

MAPSTATIONDRIVER:

PLOTCDSVWS:

PLOT ODI:

Displays ADRG data on the IVAS. Data are
usually read from CD-ROM.

Displays compressed segments on the IVAS.
Data are read from the CHARTODIDISK:

X-windows/MOTIF version of DISPLAY CAC
that is portable to VAX/VMS systems.
Displays compressed segments on a DEC
VAXstation running VWS.

Displays the area of coverage, for a
mapstation subdirectory, on a DEC
VAXstation running VWS.
A CalComp plot file, showing the area of
coverage, may also be created.

Displays downsampled segments from ADRG CDs
with each segment represented by a
rectangle.

Plots the area of a chart ODI build.
Enables the addition and/or deletion of
selected charts to the ODI build.

.1

I
I

I

II

I

I
3 DISPLAYADRGIVAS
This program is used to view ADRG data from CD-ROM on the IVAS
color monitor. The ADRG CD-ROM can be treated as a hard disk
with the exception that files cannot be deleted or created (as it
is mounted READONLY). Because the CD-ROM is accessed as a hard
disk drive, subdirectories and their files are accessible with
conventional VAX/VMS commands (e.g., SET DEFAULT).

DISPLAYADRG IVAS requires the names of the Distribution
Rectangle (DR) and the GeneralInformation File (GEN) file.
Usually, the DR and the GEN file have the same name, with the GEN
file using a ".GEN" extension. The name of the DR is found by
obtaining a directory listing of the ADRG CD-ROMs' root
directory. The GEN file name can be found by obtaining a listing
of the DR directory. The example of program execution (see
subtopic EXAMPLE) shows how these file names are obtained. ADRG
CD-ROM TPC G-19D is used in the example. The DR name is TPUS0101
and the GEN file, found inside this directory, is named
TPUS0101.GEN. Once this information is known, DISPLAYADRGIVAS
can be executed.

4 InputOutput
Perform the following steps to execute DISPLAY ADRGIVAS:

E-14

V

I1

i

I
I
I

I

I
I

A. Place the CD-ROM in one of the CDROM readers and mount it
using the MOUNTCDROM command.

B. Enter the ADRG CD-ROM reader containing the ADRG CD-ROM.

C. Enter the DR name.

D. Enter the GEN file name. The extension ".GEN" may be
omitted as this is the default extension).

E. ZDR selection: The number of ZDRs contained within the DR is
displayed. Minimum and maximum values for latitudes and
longitudes are displayed for the first ZDR. The user has the
option to display the data in the current (in this case, the
first) ZDR or skip to the next ZDR.

Selection of a ZDR is done by entering a lower or upper case
'Y' or by entering <RETURN>. To skip a ZDR, enter a lower or
upper case 'N'.

Enter a starting coordinate and an ending coordinate (ADRG
polar data is the exception where only one coordinate is
entered and one image per input coordinate is displayed).

These points refer to the upper left and lower right corners
of an area to display. Therefore, the upper left latitude must
be greater than or equal to the lower right latitude and the
upper left longitude must be less than or equal to the lower
right longitude (if the two points are the same, only one
screen of data will be displayed). Display proceeds from the
upper left to the upper right until the right longitude is
reached whereby the next frame returns to the left longitude
and moves down in latitude.

Once the entire defined area has been displayed, step E is
repeated for the next ZDR. DISPLAYADRGIVAS terminates when
there are no more ZDRs to display.

F. Placement of coordinates on the IVAS monitor. There are nine
choices:

1) Top left corner (TL)
2) Top center (TC)
3) Top right corner (TR)
4) Center left (LC)
5) Center of screen (CC)
6) Center right (RC)
7) Bottom left corner (BL)
8) Bottom center (BC)
9) Bottom right corner (BR)

Placement is selected by entering (lower case or upper case)
any of the above options in parenthesis, TL through BR. Note

E-15

that the prompt ends with (TL/BR)[CC]. Where f
(TL/BR) indicates valid selections are between the first
and last options (inclusive). Any other values are
invalid.

[CC) indicates that option 5 (Center of screen) is the
default option. 3

After an image is displayed on the IVAS monitor the user must
enter one of the following options: I

Enter <RETURN> to continue to the next image
or

Enter <AZ> to generate an image on disk that will then
be printed on the TEKTRONIX printer.

If the print option is selected, the user is prompted for an
output file name. When generating images on disk, use the
IISIMAGES: [username] directory and delete all files that are
no longer needed, as the files tend to accumulate and take up
valuable disk space. Once the file has been submitted to the I
printer, display resumes from where it left off.

G. Early termination. The user may terminate execution before the
endpoint is reached with the following commands:

Enter <AZ> When prompted to "continue or create/print an
image".

Enter <AZ> When prompted for an image file name.

4 Example
The following is an example of program execution

$ @mdffexe:mountcdrom cdromOl
Mounting CDROM01
%I-ALLOC, _OSPREY$DUBO: allocated
%I-MOUNTED, ARCl TPCXXG1 mounted on _OSPREY$DUBO:
$ dir cdromOl:[000000]
Directory OSPREY$DUBO:[000000]

TESTPA01.CPH;1 TPUS0101.DIR;1 TRANSH01.THF;1

Total of 3 files. -

$ dir cdromOl:[tpusO101].gen
Directory OSPREY$DUBO:[TPUS0101]

TPUS0101.GEN;1

Total of 1 file.

E-16

$ run/nodebug v2_dir:display_adrg_ivas

ENTER Disk name: cdromOl
ENTER Directory path name: tpusO101
ENTER GEN file name: tpusO101
There are 2 ARC zones on this cd

northlat: 32.46063613891602 degrees = 32 deg 27 min 38.29 sec
southlat: 31.99982833862305 degrees = 31 deg 59 min 59.38 sec

westlong:-116.00003814697266 degrees = -116 deg 0 min 0.14 sec
eastlong:-108.99995422363281 degrees = -108 deg 59 min 59.84 sec

Use data from this area (Y/N)[Y]? n
northlat: 35.66695785522461 degrees = 35 deg 40 min 1.05 sec
southlat: 31.99982833862305 degrees = 31 deg 59 min 59.38 sec

westlong:-116.00016021728516 degrees = -116 deg 0 min 0.58 sec
eastlong:-108.99983978271484 degrees = -108 deg 59 min 59.42 sec

Use data from this area (Y/N)[Y]?
Starting position (Upper right corner)

Enter coordinates as either decimal or deg,min,sec
Examples: 90.000 or 90 00 00 (use - for south/west

latitude/longitude
Enter latitude to view: 35
Enter longitude to view: -115
Ending position (Lower left corner)

Enter coordinates as either decimal or deg,min,sec
Examples: 90.000 or 90 00 00 (use - for south/west

latitude/longitude
Enter latitude to view: -34.5
Enter longitude to view: -114.5

Input coordinates are for:
Top Left corner (TL)
Top Center (TC)
Top Right corner (TR)
Left Center (LC)
Center (CC)
Right Center (RC)
Bot Left corner (BL)
Bot Center (BC)
Bot Right corner (BR) (TL/BR)[CC]:

Latitude, Longitude 34.9872 -115.0508
Hit <CRT> to continue or <CTRLZ> to create/print image: <CRT>

E-17

Latitude, Longitude 34.9872 -114.5178
Hit <CRT> to continue or <CTRL Z> to create/print image:
<CTRL Z>

Enter output file name |
(<CTRLZ> not to print): iis_images:[riedlinger]test.image

Writing image to disk!!
Would you like full prompting? (Y or N) n

Converting image to TEKTRONIX format

Printing file!!!

Latitude, Longitude 34.9872 -113.9848
Hit <CRT> to continue or <CTRLZ> to create/print image: <CTRL Z>

Enter output file name
(<CTRL-Z> not to print): <CTRLZ>

End DISPLAYADRGIVAS

$ @mdffexe:dismount cdrom cdromOl X
Dismounting CDROM01

3 DISPLAYCACIVAS
Reviews compressed data on the IVAS monitor. Data are read from
the CHARTODIDISK area and displayed on the IVAS screen 16
segments at a time.

4 Input_Output
Inputs required for program execution include:

Enter the map scale (0:8)
Enter the palette number
Enter the TS zone number I

** Segment Image (Y/N) [N]
If Y will prompt: Color for lines (B/W) [B]

Enter min row
Enter max row
Enter min col
Enter max col |

Note:
** Grid lines may be drawn to visually "segment" the display.

The default will not draw these lines. When in the lines -
are to be drawn (i.e., "Y" was entered), a prompt for line
color is presented. The default line color is Black, the
alternative color is White. X

E-18

Output: Compressed segment data are displayed on the IVAS monitor
16 segments at a time.

4 RequiredSubroutines
The following routines are called by DISPLAYCACIVAS.

DISPLAY CAC IVAS: Main program.
READER: Module for reading the stream CAC file into

memory.
GET CACDATA 8_BIT: Module for obtaining 8-bit CAC data.

GET POS: Module for setting up a position on the IVAS
color monitor.

PRINTIO: Module for printing an image from the IVAS.
NOARLTEKPRINT: TEKTRONIX printer driver for printing an

image.
ADDTOSCREENBUFFER: Module for adding one 256 x 256 image to the

large print buffer.

3 DISPLAY CACPORTABLE
This X-windows/MOTIF version is designed to be portable to various
VAX/VMS platforms. The name for this portable version is simply
DISPLAYCAC. Instructions for reading and displaying CAC
data are listed as subtopics.

4 Getting_Started
The following items are required to install and execute
DISPLAYCAC:

a. A copy of DISPLAYCAC.EXE. This may be stored on floppy
diskette, 9-track tape, or 6250 drive. (i.e., on one of the
systems's storage devices)

b. Volume and File Structure (VFS-IS09660) software,
serial #YT-GS001-01, Version 2.2. or
Fl1CD-IS09660 software, serial #A-MRAAA-H8, July 1992.
NOTE: F1lCD software requires VMS Operating System,
Version 5.5.

c. CD-ROM reader hardware/software.

d. X-windows/MOTIF graphics display software.

The following procedure is used to install DISPLAY _CAC software:

a. Create a new directory (e.g., [.DISPLAYCAC] to store the
program.

b. Copy the DISPLAY CAC.EXE program (from the floppy,
or 9-track tape) into the [.DISPLAYCAC] directory.

E-19

4 SelectingCAC
Select a CAC CD-ROM that contains the desired area of coverage. I
The available area of coverage is depicted on the CAC's CD-ROM
case.

1) Place the CAC CD-ROM to be viewed in the CD-ROM reader.

2) Mount the CD reader.

4 ProgramExecution
1) Set default to the directory containing DISPLAYCAC.EXE. 5
2) A symbol must be defined to execute DISPLAYCAC. To

define the symbol, type the following command at the
operating system prompt: I

display-cac == "$ XXXdisplaycac.exe"

where XXX is a path to the [.DISPLAYCAC] directory. I
3) Execute DISPLAYCAC by typing the command: |

displaycac cdromO3:

where cdromO3: is the device name (i.e., CD-ROM reader) I
as a command line argument.

4 Viewing CAC I
1) Execute DISPLAYCAC (see subtopic ProgramExecution).

2) A map of the entire world is displayed on the
screen. Click once on a center point of CAC data
to be viewed.

a. The map data area of coverage that is available I
can be obtained from the CAC's CD-ROM case.

b. If the message 'No coverage available ... try again.' |
appears when you click, try clicking again on a
different area.

3) When a center point has successfully been selected, a
blank white screen will appear, and the program will
begin reading the map data from the CAC CD-ROM that has
been loaded in the CDROM reader. NOTE:: This could take
a minute or two.

4) After all the data has been read, the buttons t
UP, DOWN, LEFT, RIGHT, EXIT and DISPLAY DATA will appear.
Click on the DISPLAY DATA button to display the
CAC data on the screen. I

E-20

C

r,

4'

r,

C:-:

4 Traversing_CAC
1) Once the first screen of CAC data has been displayed

(see subtopic Viewing_CAC), more data located above,
below, to the left and right can be viewed by clicking
on the UP, DOWN, LEFT or RIGHT buttons, respectively.

2) Loading new data from the CAC CD-ROM could take
a minute or so.

4 Program Termination
1) To exit the program, just click on the EXIT button.

2) This will terminate the program and return control
to the operating system.

3 DISPLAYCACVWS
Displays Compressed Aeronautical Chart (CAC) segments on
VAXstations running VWS software.

4 Invocation
DISPLAY CACVWS may only be executed on VAXstations running VAX
VWS software. Hence, workstations SPARK1 and SPARK3 are available
for program execution.

Perform the following steps in invoke DISPLAYCAC VWS:

* Set the processing thread
* Type the command RUN/NODEB DISPLAYCACVWS

4 InputOutput
DISPLAY CACVWS requires the following input:

Zone number:

Continuous Viewing? (Y/N) [Y]:

Segment image? (Y/N) [Y]:

Start ROW (CTRLZ to restart):

Enter the TS zone number that
contains the compressed
segments to be displayed.

Enter 'Y' if more than one
screen of data is to be
displayed else enter 'N'.
The default is 'Y'.

Enter 'Y' to draw grid lines,
which separates individual
segments, within the image.
The default is 'Y'.

Enter starting segment row
number. Typing (-Z) restarts

E-21

the input prompts. 5
Start COL (CTRLZ to change rows): Enter starting segment column

number.

End ROW (CTRLZ to restart): Enter end segment row number.
Typing (AZ) restarts the input
prompts. 3

End COL (CTRL Z to change rows): Enter end segment column number.
Typing (AZ) restarts the input
prompts. I

Note: The chart scale and PA number are obtained from the
CHARTSTATUS file. 3
Output consists of a 3-row by 4-column segment color display.

4 RequiredSubroutines
DISPLAYCACVWS utilizes the following subroutines: '
READCHART STATUS HEADER: Reads needed information from the

CHARTSTATUS.DAT file.

READPALETTE: Reads the RGB data from the palette
color table.

LOAD COLORTABLE2: Loads the RGB values from the palette I
color table onto the 3200 graphics
color lookup table. '

FINDPAFORZONE: For a given scale and zone, returns to
the PA number.

GET SEGMENTNAME: Builds directory path names for I
compressed segment files.

CACUTIL: Source code for standard "C" routines |
used throughout the MDFF software
suite.

SPDEC: "C" routine used to DECOMPRESS
compressed segment files.

3 MAPSTATION DRIVER S
MAPSTATION_DRIVER displays the area of coverage from a mapstation
subdirectory on a VAXstation 3200 monitor. A CalComp plot file,
showing the areas of coverage, may also be created (and is used I
for generating hardcopies).

Before program execution, mapstation subdirectory files must be 3
E-22

X

transferred from a mapstation onto the MDFF cluster. At program
execution, a mapstation subdirectory is read and one of the
following tasks is selected and performed:

1. Create a CalComp plot file of
* the individual segments and
* the outline of a mapstation subdirectory

(i.e., a pilot plot)

2. Display on the 3200 color monitor
* the individual segments and
* the outline of a mapstation subdirectory

(i.e., a pilot plot)

MAPSTATIONDRIVER is menu driven. The following menu options are
available, each of which is described as a subtopic:

Enter:
1 for a pilot plot
2 for a plot of individual segments
3 for displaying individual segments on 3200
4 for displaying pilot plot on 3200
5 testing polar plots

4 ProgramNotes
* (AZ) is used to exit each menu and to terminate program

execution.

* The CalComp plot file is opened in the main program. All plot
images are written into one output file which saves (expensive)
plotter paper. Hence, one output plot file may contain several
images, for example, a pilot plot image (option 1) and a plot
of individual segments (option 2)

* Proper program termination via (AZ) must occur in order to have
an EOF marker placed at the end of the plot file. Without an
EOF marker, the CalComp plotter will remain in a halted state.
Once in a halted state, the plot must be terminated by using the
terminal (located next to the plotter) with either the CANCEL or
FLUSH command.

* File extensions are not required as input. For example, when
opening a plot file for JOG scale plots, the full file name
is JOB.CALC Enter the file name without the extension: JOG

4 Pilot Plot
This options creates an outline plot, called a pilot plot, of the
area of coverage by the mapstation directories. This plot will be
used by the aircraft pilots for AOD coverage purposes.

E-23

For each side of the AOD, all mapstation subdirectory files having
the same chart scale should be plotted together. This will
provide the total area of coverage (contained on the AOD), for a
given scale, on one piece of paper.

Before this option is executed, the user must know the chart
scale, zone, coverage for the entire plot area, and names of the
mapstation subdirectory files. |

5 Input

The following procedure must be repeated to include the area of I
coverage for each zone:

A prompt will ask for the number of subdirectories in a '
particular zone. Enter (ctrl-z) to stop entering
subdirectory names and to exit this procedure.

After entering the number of subdirectories for a zone, S
program control loops to read that number of subdirectory
names. j
Once all of the subdirectory names are read,
MAPSTATIONDRIVER will prompt for the zone number

The following prompts are provided for input:

Lower latitude and longitude: Enter the lower left coordinates I
of the rectangular area of
coverage.

Upper latitude and longitude: Enter the upper right coordinates
of the rectangular area of
coverage. I

Scale: Enter the chart scale.

Title: Enter the pilot plot title. I
Side of AOD: Enter "A" or "B" to indicate which

side of the AOD is being used to I
store the data.

(Area of coverage procedure)
How many files are to be combined
for this zone:(ctrl-z)to quit): Enter the number of mapstation

subdirectories to be included as
coverage for this zone, or enter I
(ctrl-z) to exit.

Mapstation directory name: This prompt repeats until all |

E-24

subdirectory filenames have been
entered.

Zone: Enter the zone number.

5 Output
The file naming convention for plot files is as follows:

AREA.CALC

where

AREA = A file name that is descriptive of the area of coverage.
CALC = The file extension, denoting the file is a CalComp plot

file.

4 Plot of IndividualSegments
This option creates a plot of individual segments that are
contained within a single mapstation subdirectory. The plot will
be used by NWC to review the AOD for accuracy.

This option also creates a listing for each plot that contains the
maximum and minimum latitude and longitude coordinates for each
row of segments. Subtopic output contains additional information
on output files.

Before this option is executed, the user must know the chart
scale, zone, and the area of coverage for each subdirectory. The
user must also know the subdirectory number.

NWC reviews each subdirectory separately. By using this approach,
it is easier to determine the subdirectory bounds and accuracy.
Hence, only one subdirectory per plot is allowed.

5 Input
The following prompts are provided for input:

Lower latitude and longitude: Enter the lower left coordinates
of the rectangular area of
coverage.

Upper latitude and longitude: Enter the upper right coordinates
of the rectangular area of
coverage.

Scale: Enter the chart scale.

Zone: Enter the zone's area of coverage

Title: Enter the pilot plot title.

E-25

Side of AOD: Enter "A" or "B" to indicate which
side of the AOD is being used to .
store the data.

Subdirectory number: 3
Plot row-col: (which really means: would you

like to label the row and col, and
create a listing of the min/max 1
latitude/longitude of each row).
Enter "IY" or "N"

5 Output
The file naming convention for plot files is as follows:

AREA.CALC

where |

AREA = A file name that is descriptive of the area of coverage.
CALC = The file extension, denoting the file is a CalComp plot

file.

This option also creates a listing for each plot that contains the
maximum and minimum latitude and longitude coordinates for each
row of segments. The file naming convention for the plot file
listings is as follows:

AREA.LIS I
where

AREA = A file name that is descriptive of the area of coverage.
LIS = The file extension, denoting the file is a listing of

a plot file.

4 Displaying-IndividualSegments
This option allows the user to display a mapstation subdirectory
on the VAXstation 3200. This option is primarily used to obtain
the area of coverage and to view missing segments within a single
mapstation subdirectory. '
5 Input
The following prompts are provided for input:

Scale: Enter the chart scale.

Zone: Enter the zone's area of coverage.

Mapstation filename: Enter the mapstation subdirectory name.

Once these prompts are answered, the last five row and column |

E-26

numbers are displayed. At times, extraneous segments not actually 4,

part of the area of coverage are created. These segments are
detected when their row/column numbers are out of sequence with -

valid segment row/column numbers.

* If the last set of row/column numbers are out of sequence, then
they should be considered invalid segments and eliminated.
Invalid segments are eliminated by simply reducing the number of
segments to be viewed (hence, only including valid segments).

* The number of segments to be viewed should be changed to include
the last valid set of row/column numbers.

4 DisplayingPilotPlot
This option allows the user to display the bounds of a mapstation
subdirectory on the 3200. This option is primarily used to view
the outline of a single mapstation subdirectory.

5 Input
The following prompts are provided for input:

Do you want to set the bounds
for this subdirectory: [n] The default is "n" for NO.

If "y" for YES:
Lower latitude and longitude: Enter the lower left

coordinates of the
rectangular area of
coverage.

Upper latitude and longitude: Enter the upper right
coordinates of the
rectangular area of
coverage.

Scale: Enter the chart scale.

Zone: Enter the zone's area of coverage.

Enter the number of files
to read for this zone: Enter the number of files, contained

within the zone, that are to be included
in the area of coverage.

Mapstation filename: Enter the mapstation subdirectory name.

4 PolarPlots
This option will create either a plot file of the individual
segments or an outline of the bounds for a single subdirectory of
polar data.

The individual segment plot will be used by NWC to review the AOD

E-27

for accuracy. The bounds plot will be used by aircraft pilots for |
coverage purposes.

All latitudes and longitudes are hardcoded. '
As of March 12, 1992, this program reads from a processing thread.
Once there are actual polar mapstation subdirectories, this
program will be updated. 3
5 Input
The following prompts are provided for input: |

Scale: Enter the chart scale.

Zone: Enter the zone's area of coverage. '
Title for the plot: Enter the plot's title.

Enter the side of I
the AOD (A OR B): Enter "A" or "B" to indicate which side of

the AOD is being used to store the data. 3
Enter the subdirectory

number to plot: Enter the number representing the appropriate -
mapstation subdirectory. I

Do you want to draw
1. the bounds of the subdirectory
2. the individual segments

Enter 1 or 2:

Do you want to draw
the land: [y] The default is "y" for yes.

Do you want the political 1
boundaries: [y] The default is "y" for yes.

3 PLOTCDSVWS
Displays downsampled segments from ADRG CDs, with each segment
represented by a rectangle. Downsampled segments from as many as
8 ADRG CDs may be simultaneously displayed. Segments having full
pixel counts (65536 pixels), or core segments, are drawn with
black lines. Segments having lower pixel counts, or edge segments,
are drawn with red lines along with a dissecting line running in
one of the following directions:

vertically
horizontally
diagonally - from upper left to lower right
diagonally - from upper right to lower left 3

E-28

Dissecting lines are used to create a visual distinction between
edge segments.

The entire ADRG CD must be downsampled before it can be displayed
with PLOTCDSVWS.

4 Invocation
PLOTCDSVWS may only be executed on workstations running VAX/VWS
software. Hence, workstations SPARKi and SPARK3 are available
for program execution. Perform the following step to execute
PLOT CDS VWS:

* Define a processing thread.
* Type the command RUN/NODEBUG V2_DIR:PLOT CDS

4 Input
PLOTCDSVWS requires the following input.

Enter the M4 zone to plot [0-4) (only one zone at a time can be
plotted).

Enter the type of data to plot: 1 for full segments only
2 for edge segments only
3 for both (full and edge)

Enter the last four characters of the chart name (DMA STOCK
NUMBER).

Note: ADRG CD chart names are used as they utilize a geographic-
based naming convention. For example, with JNC scale charts,
chart X005 is located next to chart X006. MDFF CD numbers are not
used as they are assigned sequentially at processing time. Hence,
two adjacent charts, when not processed sequentially, possess non-
sequential MDFF CD numbers. For example, JNC chart X005 has been
assigned MDFF CD number 492 and JNC chart X006 has been assigned
MDFF CD number 382 respectively).

Up to eight ADRG CDs may be displayed. When less than eight CDS
are to be displayed, type <AZ> to terminate the last CD entry.
PLOTCDSVWS will then display the segments.

Adjacent ADRG CDs (i.e., areas of contiguous coverage) have an
overlap of edge segments. The edge segments that are shared by
different CDs will have a pattern formed by the horizontal,
vertical, or diagonal lines that are associated with the CDs.

3 PLOTODI
An interactive program that is used to define the area of coverage
for a chart ODI build. Calcomp plots, depicting the total area of
coverage, are created.

4 Invocation

E-29

PLOT ODI may only be displayed on VAXstations that are running
DECwindows software. Currently, SPARK2 is the only available S
DECwindows node.

Perform the following steps to execute PLOT ODI: |

* Set the appropriate processing thread
$ADRGLOGS ###
where ### is the three-character processing thread name

* Invoke PLOT ODI
$RUN/NODEB MDFFEXE:PLOT ODI

4 Input_Output
Upon execution, the main selection box, containing three buttons
is displayed. The buttons are labeled PLOT, CONTROL, and QUIT.
Currently, only the PLOT and QUIT buttons are implemented.

Select the PLOT option to continue the program. I
Select the QUIT option to terminate the program.

When the PLOT option is selected, a box containing all of the 3
available scales is displayed. Select the appropriate scale by
placing the arrow on the desired scale and clicking the first
mouse button.

The complete available area of coverage is represented by a grid
of colored squares. Each square within the grid represents an ADRG
CD-ROM. A CD-ROM (i.e., area of coverage) is selected for
inclusion (to the chart ODI build) by placing the arrow inside a
square and double clicking the first mouse button. Once it has
been selected, the square turns blue. Up to 200 CD-ROMS may be I
selected.

A CD-ROM may be unselected by double clicking the first mouse
button inside a blue square. The square will then turn back to
it's original color (either red or black). Squares that are
colored red represent a CD-ROM that has already been incorporated
into a CAC. Black squares represent CD-ROMs that have not been I
incorporated.

Once all of the desired CD-ROMs have been selected, the third
mouse button should be clicked. Another selection box, containing
PLOT and CANCEL options is displayed.

Use the PLOT option when the selections are complete. I
(Additional CD-ROM's may be selected at a later date.)

Use the CANCEL option to erase the CD-ROM selections that were I
made during this session.

When the PLOT option has been selected, a CalComp plot file that 5
E-30

shows the chart ODI area of coverage, is created. PLOTODI will
prompt for the following information

a title for the plot,
a filename for the plot file
a target completion date for the chart ODI

A file extension must not be included as part of the plot file
name. A directory path can be included as part of the file name.
Once the plot file is created and written, the main selection box
is again displayed.

4 Remote Execution
PLOTODI requires the use of DECwindow software. Hence, only
those nodes, that have DECwindow software, can be used for display
(i.e., acting as the client).

PLOT ODI can executed on any node as long as the client is located
on a DECwindows supported node. Utilizing the speed of faster
CPUs (e.g., node HARIER) enables faster program execution.

The following steps enable PLOT ODI execution on node HARIER and
display on the SPARK2 monitor:

1) Add the following lines to your LOGIN.COM file:

$! Identify SPARK2 monitor as the display device.
$ define DECW$DISPLAY WSAI

$! Identify the display device on node SPARK2
$ set display/create/node=SPARK2

2) Add the appropriate node and user name to the security
customization of your DECwindows session:

* Using the SESSION MANAGER menu, select the CUSTOMIZATION
option.

* Using the CUSTOMIZATION menu:

- Select the SECURITY option.

- Identify a node by placing the arrow inside of the node
name box and clicking the left mouse button. Using the
keyboard, type the name of the node that will need access
to the client (i.e., the SPARK2 monitor).

- Identify a user name by placing the arrow inside of the
user name box and clicking the left mouse button. Using
the keyboard, type the name of the user who will
need access to the client (i.e., the SPARK2 monitor).

E-31

- once the appropriate names have been entered, select the
ADD option.

The node and user names will now appear in the authorized user
list. Additional names may be added to the authorization list I
by using the ADD option and repeating the above steps.

2 DOWNSAMPLECD

This program will produce the source ADRG CD-ROM's header file
(the DMA ADRG product specification provides complete
information concerning ADRG data). For each distribution
rectangle on the ADRG CD-ROM, this program creates the DR
Header File, Source Graphics Header File, and the DR coverage I
file. ADRG data are transformed from ARC projection to TS
projection. Data are compressed by a factor of 4:1 due to the
change in resolution from 256 pixels per inch (ARC) to 128
pixels per inch (TS).

2 DSSEGS
This program is used to downsample specific Tessellated Spheroid
(TS) segments from ADRG data that are stored on CD-ROM.

3 Input Output 5
Perform the following steps to execute DSSEGS:

A. Define a processing thread. 3
B. After placing the appropriate ADRG CD-ROM onto a CDREADER,

mount the CD-ROM using the MOUNTCDROM command.

C. Invoke DSSEGS using the command: RUN/NODEB V2_DIR:DSSEGS

D. DSSEGS will prompt for the following information: 3
* The CDREADER that contains the ADRG CD-ROM.

* The path to use for writing downsampled TS data (the I
user is given 3 choices,

1) MDFFSCRATCH:[CBREPAIR] 3
2) CHARTSEGMENTS:

3) A user-defined area (see 3
example 1 below),

* The M4 zone from which to downsample. 3
* The start and end row and col of TS segments to

downsample. g

E-32

DS SEGS displays the number of Distribution Rectangles (DRs) on
the ADRG CD-ROM and the number of Zone Distribution Rectangles
(ZDR) associated with each DR.

DSSEGS attempts to downsample each segment from all ZDRs
associated with each DR. If a segment is not within a ZDR, a
message is printed and the program begins downsampling for the
next segment.

Once all ZDRs are exhausted for a particular DR, DS_SEGS tries
downsampling the next DR and its ZDRs. When ADRG data are
downsampled into a segment, a pixel count is displayed. A full
or core segment must have pixel counts that add up to 65536
pixels. Unfilled or edge segments possess fewer than 65536
pixels and require additional downampled data from appropriate
adjoining ADRG CD(s). Because a segment may be downsampled
partially or wholly from more than one ZDR and DR, an individual
segments' pixel count may add up to more than 65536 pixels.

The following are two example runs of DS SEGS. EXAMPLE 1
downsamples one TS segment from an ADRG CD (row 1, column 125)
and sends output to a user-defined area. EXAMPLE 2 downsamples
two TS segments from an ADRG CD (row -22, columns 12 and 13) and
sends the output to the MDFFSCRATCH:[CBREPAIR] area.

3 Examples
The following are examples of program execution.

Example 1: Downsample one TS segment from an ADRG CD (row 1,
column 125) and send output to a user-defined area.

Example 2: Downsample two TS segments from an ADRG CD (row -22,
columns 12 and 13) and send output to the
MDFFSCRATCH:[CB REPAIR] area.

4 Example_1
Downsample one TS segment from an ADRG CD (row 1,column 125)
and send output to a user-defined area.

$ @mdffexe:useadrglogicals a5b
$ @mdffexe:mountcdrom cdroml
Mounting CDROM1
%I-ALLOC, _OSPREY$DUBO: allocated
%I-MOUNTED, ARCl_JNCXX05 mounted on _OSPREY$DUBO:

$ run/nodebug v2 dir:ds_segs
Enter CD device drive: cdroml
Enter downsample segments directory
Enter: 1 for MDFF _SCRATCH:[CBREPAIR]

2 for CHARTSEGMENTS:
3 for other: 3

Enter output destination (INCLUDE []):

E-33

mdff$disk:[riedlinger.ds_segments]
Enter M4 zone # to process (0/4): 2
Enter start, end ROW of segments to downsample: 1,1
Enter start, end COL of segments to downsample: 125,125 g
There are 1 DR(s) on this CDROM
Processing DR: 01

Num ZDRs: 1
ARC zone: 1
ZDR num: 1
Processing ROW/COL: 1 125
PIXELS DOWNSAMPLED: 65536

Enter M4 zone # to process (0/4): <CRTLZ>
$ @mdffexe:dismountcdrom cdroml
dismounted cdroml I I
Dismounting CDROMl

4 Example_2 1
Downsample two TS segments from an ADRG CD (row -22,
columns 12 and 13) and send the output to the
MDFFSCRATCH:[CBREPAIR] area.

$ @mdffexe:mount cdrom cdroml
Mounting CDROM1
%I-ALLOC, _OSPREY$DUBO: allocated
%I-MOUNTED, ARCl_JNCXXll mounted on _OSPREY$DUB0:

$ run/nodebug v2 dir:ds_segs I
Enter CD device drive: cdroml
Enter downsample segments directory
Enter: 1 for MDFFSCRATCH:[CB REPAIR]

2 for CHARTSEGMENTS:
3 for other: 1

Enter M4 zone # to process (0/4): 0
Enter start, end ROW of segments to downsample: -22,-22
Enter start, end COL of segments to downsample: 12,13

There are 1 DR(s) on this CDROM 1
Processing DR: 01

Num ZDRs: 5
ARC zone: 11 U
ZDR num: 1

TOP ZONE: 1
BOT ZONE: 1 3
Input zone of 0 not within ARCI zone of 11

ARC zone: 12
ZDR num: 2
Processing ROW/COL: -22 12
Segment not in bounds of this ZDR
Processing ROW/COL: - -22 13
Segment not in bounds of this ZDR

E-34

ARC zone: 13
ZDR num: 3
Processing ROW/COL:
Segment not in bounds of
Processing ROW/COL:
Segment not in bounds of
ARC zone: 14
ZDR num: 4
Processing ROW/COL:
PIXELS DOWNSPMPLED:
Processing ROW/COL:
PIXELS DOWNSAMPLED:
ARC zone: 15
ZDR num: 5
Processing ROW/COL:
Segment not in bounds of
Processing ROW/COL:

-22
this ZDR

-22
this ZDR

-22
65536

-22
65536

-22
this ZDR

-22
Segment not in bounds of this ZDR

Enter M4 zone # to process (0/4): <CTRL Z>

r -

I- i

r,

-

12

13

12

13

12

13

$ @mdffexe:dismountcdrom cdroml
$ cdroml
Dismounting CDROM1

2 DUMP CODEBOOK STATUS
DUMP CODEBOOK STATUS lists information about the codebooks of a
specific CD or PA, that is being processed under a given
processing thread.

DUMPCODEBOOKSTATUS is invoked through a DCL-like command. It is
a "foreign" command that is defined in MDFFEXE:MDFFSYMBOLS.COM.

Format

DUMP CODEBOOK STATUS [processing thread]

3 /CD NUMBER
/CDNUMBER[=(CD number)[,...])]

Dump specified MDFF CD number(s) codebooks.

3 /OUTPUT
/OUTPUT=SYS$OUTPUT (default)
/OUTPUT[=file specification)

Directs the output to the specified file.

3 /PA-NUMBER
/PANUMBER[=(PA number)[,...])]

E-35

Dump codebooks from specified PA Directories.

3 /PRINT
/PRINT=MDFFPRINTQUEUE (default)
/PRINT[=queue]

Prints the output to a specified printer.

2 DUMP COLPAL DB
Lists information about each existing color palette onto the
user's video monitor, or SYS$OUTPUT.

Type the following command to run DUMPCOLPALDB:
RUN/NODEB V2_DIR:DUMPCOLPALDB

3 InformationRecord
The following information is included for each color palette:

PA
ID

Where

PA
MS MZ Area Date:Time

Left Right Top Bot
Long Long Lat Lat

PA ID: Palette identification number.
MS: Map scale.
MZ: Model 4 TS zone number.

PA Area: Palette area.
Date:Time: Date and time of color palette creation.
Left Long: Left longitude boundary for area of coverage by this

color palette.
Right Long: Right longitude boundary for area of coverage by this

color palette.
Top Lat: Top latitude boundary for area of coverage by this

color palette.
Bot Lat: Bottom latitude boundary for area of coverage by this

color palette.

2 DUMP DS SEGMENTS
DUMP DS SEGMENTS lists information about the downsampled segments
of a CD that is being processed under a given processing thread
name.

DUMPDSSEGMENTS is invoked through a DCL-like command. It is a
"foreign" command that is defined in MDFFEXE:MDFFSYMBOLS.COM.

Format:

DUMPDSSEGMENTS [processing thread]

3 /CD-NUMBER

E-36

I

i

I

l
I
I

I

I

I

I

I
I

I

'I

/CDNUMBER[=(CD number)[,...])]

Dumps the status of the downsampled segments of the
specified MDFF CD number(s).

3 /OUTPUT
/OUTPUT=SYS$OUTPUT (default)
/OUTPUT[=file specification]

Directs the output to the specified file.
By default, output is directed to SYS$OUTPUT.

3 /PRINT
/PRINT=MDFFPRINTQUEUE (default)
/PRINT[=queue]

Prints the output to the specified printer.
The default the print queue MDFFPRINTQUEUE

2 ENCODEKEY
This program prompts for a segment's row and column numbers.
These numbers are encoded to a key that is displayed as output.
The key comprises part of the segment's file name:

key = [(2 * maxrow + 1) * (col + maxrow)] + row + maxrow + 1

where maxrow = 9000

2 FIND CD STATUS
FIND CD STATUS.COM checks all processing threads for the
UNAVAILABILITY of CD-ROM readers. For each processing thread,
the current CHARTSTATUS file is opened, and the
CHART STATUSRECORD is read and searched for each entry
containing the following information:

LASTCOMPLETED PHASE that is less than or equal to ADRG READ
PROCESSINGSTATE that is less than or equal to

DOWNSAMPLING ADRG

When an entry is found to satisfy the above criteria, the
following message is displayed:

Reader CDROMO#(ADRG) is not available!!!
where

CDROM0# is the CD-ROM reader number
ADRG is the DMA ADRG CD name

Additionally, a call to SHOWCDREADER_STATUS is included to show
which CD-ROM readers are currently in use.

FINDCDSTATUS.COM relies on the following programs:

E-37

FIND CD STATUS DRIVER - Determines current processing thread and I
the number of entries contained in
the CHART-STATUS file
(which is passed to FINDCDSTATUS).

FINDCDSTATUS - Receives number of entries for a
particular processing thread, and reads
the CHARTSTATUS RECORD searching for
entries, whose lastcompleted_phase and
processingstate meet the above criteria
(a message is displayed for those entries I
meeting these criteria).

2 LIST CHART STATUS I
LIST_CHART_STATUS reads the CHARTSTATUS file of the current or
specified processing thread. Information about the thread and its
associated charts are listed.

LISTCHARTSTATUS is invoked through a DCL-like command. It is a
"foreign" command in MDFFEXE:MDFFSYMBOLS.COM and can be
abbreviated as LIST.

Format 3
LIST [processing thread] qualifier(s)

3 Examples
Example 1

$ LIST

Lists all entries in CHART STATUS for the currently defined
processing thread. If no thread has been set, the user will be
asked to enter a valid thread name.

Example 2 1
$ LIST A3B

Lists all entries in CHART-STATUS for processing thread A3B. 3
3 /ALL 3
Lists every entry in the CHARTSTATUS file. The program default.

Format 3
LIST /ALL

I
E-38

I

(-7

3 /CD_NUMBER
Lists entries in CHARTSTATUS that possess the specified MDFF CD 4,

number(s).

Format -

LIST /CDNUMBER[=(CD number)[,...])]

4 Example
$ LIST/CDNUMBER=(511,600)

Lists CHARTSTATUS entries with CD numbers 511 and 600.

3 /ENTRY
Lists specified entry number(s) in CHARTSTATUS.

Format

LIST /ENTRY[=(entry number)[,...])]

3 /FULL
Lists the complete status record. The default is NOFULL.

Format

LIST /[NO]FULL (default)

3 /HEADER
Includes the header record in the listing. The default is
NOHEADER

Format

LIST /[NO]HEADER

4 /HEADER=ONLY

Lists only the header record.

3 /OUTPUT
Directs the output to the specified file. By default, output is
sent to SYS$OUTPUT.

Format

LIST /OUTPUT[=file specification]

4 Example

E-39

$ LIST A3B/PRINT=HARIER$LZ1/OUTPUT=MYFILE.OUT

Lists all entries of processing thread A3B to an output file
named MYFILE.OUT and sends a copy of to the print queue
HARIER$LZ1 to be printed. 5

3 /PASS
Lists every entry in the CHARTSTATUS file associated with the
specified PASS. By default, entries associated with PASSl are
listed.

Format

LIST /PASS[=pass number] 3
3 /PRINT g
Prints the listing on a specified printer. By default, output is
sent to the print queue that is defined by the DCL symbol
MDFFPRINTQUEUE.

Format

LIST /PRINT[=queue] 3
4 Example

$ LIST A3B/PRINT=HARIER$LZ1/OUTPUT=MYFILE.OUT '
Lists all entries of processing thread A3B to an output file
named MYFILE.OUT and sends a copy to the print queue
HARIER$LZ1 to be printed. X

4 /COPIES
Indicates the number of copies to be printed. '
Format

LIST /PRINT/COPIES=# 3
where # is the number of copies to be printed on SYS$OUTPUT.

3 /STOCK NUMBER
Lists CHARTSTATUS entries that contain the specified DMA
stock number(s).

Format

LIST /STOCKNUMBER[=("stock number")[,...])]

4 Example |

E-40

$ LIST A3B/STOCKNUMBER=TPCXX/HEADER

List all CHART STATUS entries with the substring 'TPCXX' as part
of their DMA STOCK NUMBER. The header will also be displayed on
the screen.

2 PROCESSCHART
Exists as a continuing background process that monitors and
maintains CHART ODI processing.

2 READ ADRGDATA
Thlis program reads a specific file or a set of files
(encompassing the CD-ROM image to be used in the chart ODI
build) from CD-ROM or magnetic tape. The file(s) will be
placed in the directory that is specified in a passed parameter
to speed up overall MDFF processing.

2 SHOWCDREADERSTATUS
Displays the status of CD-ROM readers; availability and owner
process names (for unavailable readers).

2 TEK
Prints files with extensions .TEK or .IMAGE on the TEKTRONIX
printer, via the TEK$PRINT queue. TEK is invoked through a DCL-
like command: it is a "foreign" command in
MDFFEXE:MDFFSYMBOLS.COM.

Format
TEK [/qualifiers) filename

where
qualifiers include [COPIES)

[CREATE]**
[KEEP]
[NONOTIFY]
[PRINT]
[RECOVER]**
[REMOVE]
[SHOW]

filename is the .TEK or .IMAGE file name

** See sub-topic System-managementtools for information about
these qualifiers.

3 /COPIES
Specifies the number of copies to be printed.

/COPIES[=# of copies] (default = 1)

4 Examples

1. $TEK/PRINT=EXAMPLE.IMAGE/COPIES=2/KEEP=NONE/NONOTIFY

E-41

-~~~~~~~~~
The TEK command prints two copies of the file 'EXAMPLE.IMAGE', 5
deletes the .IMAGE file and the .TEK file upon printing, and does
not notify the user when the job has completed printing.

3 /KEEP I
Specifies which files should be deleted or kept after printing.
The default is to keep the .IMAGE file and to delete the .TEK
file.

The following values may be used with /KEEP for the following
actions:

/KEEP (default = /KEEP=IMAGE)

/KEEP=NONE .TEK and .IMAGE files are deleted. I
/KEEP=ALL .TEK and .IMAGE files are kept. g
/KEEP=TEK .TEK file is kept and the .IMAGE file is kept

(if one exists).

/KEEP=IMAGE .IMAGE file is kept and the .TEK file is 1
deleted. (Default)

4 Examples
1. $TEK/PRINT=EXAMPLE.IMAGE/COPIES=2/KEEP=NONE/NONOTIFY

The TEK command prints two copies of the file 'EXAMPLE.IMAGE', 3
deletes the .IMAGE file and the .TEK file upon printing and does
not notify the user when the job has completed printing.

2. $TEK/PRINT=EXAMPLE.TEK/KEEP=TEK I
The TEK command prints one copy of the .TEK file 'EXAMPLE.TEK'
and does not delete the .TEK file after printing. I
3 /NONOTIFY -
The user will not be notified when the print job(s) have I
completed. The default is NOTIFY.

4 Examples
1. $TEK/PRINT=EXAMPLE.IMAGE/COPIES=2/NONOTIFY

The TEK command prints two copies of the file 'EXAMPLE.IMAGE'
and does not notify the user when the job has completed printing. I

3 /PRINT
Prints a .TEK or an .IMAGE file. Only file names with .TEK or
.IMAGE extensions may be specified. Since there is no default
file type, a file name using one of these extensions must be
specified. 3

E-42

4 Examples
1. $TEK/PRINT=EXAMPLE.TEK/KEEP=TEK 21

The TEK command prints one copy of the .TEK file 'EXAMPLE.TEK'
and does not delete the .TEK file after printing.

2. $TEK/PRINT=EXAMPLE.IMAGE/COPIES=2/KEEP=NONE/NONOTIFY

The TEK command prints two copies of the file 'EXAMPLE.IMAGE',
deletes the .IMAGE file and the .TEK file upon printing, and does
not notify the user when the job has completed printing.

3 /REMOVE
Removes specified entry number(s) from TEK queue. Special
privileges are required to remove job entries belonging to other
users.

/REMOVE={entry_num (entrynum,entrynum,...)
entrynum:entrynum}

4 Examples
1. $TEK/REMOVE=(1,6,7)

The TEK command identifies which job entries to remove from the
FIFO queue: job entries 1, 6, and 7 will be removed from the
queue.

2. $TEK/REMOVE=1:5

The TEK command uses a range of job entries to remove jobs from
the FIFO queue: job entries 1 through 5 will be removed from the
queue.

3 /SHOW
Displays current status of jobs in the FIFO queue. The FIFO queue

holds the following information:

FIFO queue status
IIS IMAGES disk space
TEK4PRINT queue status
Jobs being printed

Job states:
WAITING - waiting in the queue.
PROCESSING - being converted from an .IMAGE file to a .TEK file.

PROC COMP - conversion complete, waiting to be printed.
PRINTING - being printed on the TEKTRONIX printer.
COMPLETE - job complete.

E-4 3

4 Examples

1. $TEK/SHOW

The TEK command shows information about the FIFO queue: all print
jobs and their status.

3 IMAGEFiles
When a file with an .IMAGE extension is specified, the print job
is placed into the FIFO queue In order to be printed, an .IMAGE
file must first converted into a .TEK file. The .TEK file will be
created in the user's IISIMAGES:[user] directory. Once it has 3
been created, the .TEK file is sent to the TEK$PRINT queue for
printing.

The status of a print job, which is still in the FIFO queue, is I
provided through the TEK/SHOW command.

A print job can be removed from the FIFO queue with the TEK/REMOVE £
command. TEK/REMOVE can not remove jobs in the TEK$PRINT queue.

By default, the .TEK file is deleted after printing. Use the I
/KEEP=TEK qualifier to prevent the TEK file from being deleted
(see subtopic /KEEP).

3 PrintQueues I
TEK relys on two queues for printing; a FIFO queue and the VAX/VMS
print queue TEK$PRINT.

4 FIFO Queue
The FIFO queue is designed to hold print jobs and provide
information about their various states. All jobs are eventually 3
sent to the TEK$PRINT queue for printing. Available information
includes:

FIFO queue status
IIS IMAGES disk space
.TEK$PRINT queue status
Jobs being printed

Print job states:
WAITING - waiting in the queue.
PROCESSING - being converted from an .IMAGE file to a .TEK file.

PROC COMP - conversion complete, waiting to be printed.
PRINTING - being printed on the TEKTRONIX printer.
COMPLETE - job complete.

This information is available through the /SHOW qualifier (see 3
/SHOW).

TEK CONTROL is an independent batch process that monitors the FIFO

E-44

C7

queue and acts upon jobs according to their status. For example,
jobs that possess a "PROCCOMP" status are sent to the TEK$PRINT
queue for printing.

4 TEK$PRINTQueue
A VAX/VMS print queue that prints .TEK files on the TEKTRONIX
printer.Information about this queue is available through
conventional VMS/DCL commands (see VMS HELP topic SHOW).

3 Subroutine Invocation
TEK functionality is available through use of the C language
subroutine ADDTOTEKQUEUE. All values are passed by reference.

Invocation syntax:

ADDTOTEKQUEUE (print filename, numof_copies,
keep_flag, notify_flag);

where
print filename = name of the .IMAGE or .TEK file to be printed

num of_copies = number of copies to be printed.

keep_flag = 0, 1, 2, or 3 0 = /KEEP=NONE
1 = /KEEP=IMAGE
2 = /KEEP=ALL
3 = /KEEP=TEK

notify_flag = TRUE or FALSE TRUE = NOTIFY
FALSE = NONOTIFY

3 SystemManagementTools
The following options are available for system management
functions. System privileges are required for their use.

/CREATE Creates the TEK Job Queue data file.

/RECOVER Recovers the TEK Job Queue data file after a system
failure has occurred.

3 TEK Files
Files with a .TEK extension are sent directly to the TEKTRONIX
printer (i.e., TEK$PRINT) for printing.

By default, the .TEK file is deleted after printing. Use the
/KEEP=TEK qualifier to prevent the TEK file from being deleted
(see sub-topic /KEEP).

2 TRIM ODI STRUCT
TRIM_ODI_STRUCT moves designated compressed and downsampled
segments from a specified processing thread into a trimmed

E-45

directory that is located on the same disk. In effect, moving
these segments out side of the area of coverage, "trims" the data I
that is used as part of an ODI build. All trimmed segments, both
compressed and downsampled, are marked as being "TRIMMED" in the
SEGMENTS.DAT file. U
Two types of bitmaps are used in performing the ODI trim:

* Bitmaps for defining the current area of coverage
* Bitmaps for the desired ODI bounds I

Using the SEGMENTS.DAT file, bitmaps of the current area of
coverage, are built. Bitmaps for the ODI bounds are based upon
the ODIBOUNDS.DAT file, where the southwest latitude/longitude
and northeast latitude/longitude corners of rectangles are used to
define the desired areas to keep (i.e., the bitmaps are composed
of these rectangles). For additional information about bitmaps, I
see MDFFHELP topic BITMAPS.

Once built, the coverage and ODI bounds bitmaps are compared to
determine which segments are to be trimmed (i.e., moved to the
trim directory); all segments that lie outside of these rectangles
will be trimmed.

3 Input"Output
There is no user input. Necessary information for performing the
ODI trim is automatically obtained from the SEGMENTS.DAT and I
ODI BOUNDS.DAT files. The ODI BOUNDS.DAT file can be modified
through the PASS2 phase of CHARTCONTROL. U
TRIMODISTRUCT moves the segments to a scratch area instead of
permanently deleting them. This is accomplished by creating a
trimmed directory on the same disk and level as the parent
directory of the map data.

EXAMPLE 1: Trimmed Directory for Compressed Segments.
If the current parent directory is CHART ODI:[MDFF.A5B],
then a new trimmed directory named CHART_ODI:[MDFF.A5BTRIMMED]
is created. I
EXAMPLE 2: Trimmed Directory for Downsampled Segments.
If the current parent directory is CHART SEGS:[MDFF.A5B],
then a new trimmed directory named CHARTSEGS: [MDFF.A5BTRIMMED]
is created.

Once the trimmed directories have been created, palette
directories and row directories are created within the trimmed U
directories, to house the segments that are to be trimmed (i.e.,
moved into these new areas). 3

3 Invocation
TRIMODISTRUCT was designed to be executed as a detached process
from CHART CONTROL but can also be executed from VMS.

E-46

Use the following instructions to execute from the VMS level:

(1) Set the process thread of the map data to be trimmed.
(2) Type RUN/NODEB MDFFEXE:TRIM ODI STRUCT.

E-47

m m m m -l a m S - S s a a a a a m

c--

C--

APPENDIX F
TOPIC FILE CACSOURCECODE.HLP

Overview
BITMAP APPL.C

BITMAP APPL INIT
BITMAPCOUNT INIT
BITMAPFROM LATLON . . .
COMBINE BOXES RET . . .
DEFINE BOXES PER ZONE . .
DEFINEBOXESSEND
GETBITMAP FROM DISK . . .
GETCOORDS ..
MINMAX INIT
STORE_ OXCOORDINATES

BITMAP ODI.C
BUILD ODI BOUNDS BITMAP
BUILDODIBOUNDSBITMAP2

BITMAP PROCS.C
ADDBUFTOBM
BITMAP INIT
CHECKDOWN
CHECKDOWNLEFT . .
CHECKDOWNRIGHT
CHECK-LEFT
CHECKRIGHT
CHECK-UP
CHECKUPLEFT
CHECKUPRIGHT
CLEAR-BIT
CLEARBITMAP
CLOSEBITMAPFILE . . .
CONVERTBMTORC
CONVERTRC TOBM . . .
COPYBITMAP
CREATEBITMAP
DESTROY BITMAP
DUMPBITMAP
INDEX
IS CLEAR
ISSET
MERGEBITMAPS
OPEN_BITMAPFILE
READ IN BITMAP
REMOVEBUF FROM BM
SETBIT
SETBITMAP
TOGGLE BIT
WRITE OUT BITMAP

BITMAP SEGMENTSDAT.C
BUILDSEGMENTSDAT BITMAPS

. F-6
. F-8

. F-9
.. F-9

...... F-9F-9.... F-10
F-10

.. F-10
.. F-10

.. F-11

F-12
F-12
F-13
F-13
F-13

.. F-15
F-15
F-16

....... F-16
F-16

.. F-16
.. F-17

F-17
F-17
F-18

.. F-18
.... F-18

.. F-18
F-19

... F-19
F-19
F-19
F-19

.. F-19

.. F-20
. F-20

F-20
.. F-20

. F-21
F-21

.. F-21
F-21

. F-22

. F-22

. F-22

. F-24

. F-25

F-1

COVERAGEFROMSEGMENTSDAT
BITMAP SOURCE.C

BITMAP DS SOURCE
BITMAPMAP SOURCE
GETMINMAXFROMCACID . .
GETMINMAX FROM-DS . . .
GETMINMAXFROMMAP . . .

BITMAP TRANS.C
BITMAPTRANSINIT
BITMAPTRANSSEND
BITMAP_TRANSRET

BUILDCDID.C
CAC.C

CACINIT
CACINQPALETTE
CACGETLL
CACGET RC
BUFFERCOMPRESSEDSEGMENT

CACMISC.C
READ AREADRC
READAREASORC
READCDHEADER
READDRHEADER
READSGHEADER
FILEOPEN ERROR
FILE_READERROR . . .

CACUTIL.C . ..
Overview
DECODEKEY.
DECOMPRESSSEGMENT . .
DOUBLETOSI
ENCODEKEY
EQ2POL
GETDECOMPRESSEDPIXEL
GETSEGMENTNAME
INITMEM
LATLONCALC
LOADLEGENDDATA . . .
ODD
POL2EQ
RCCALC
READCDCOVRG
READCDID
READ COMPRESSEDSEGMENT
READPA COVERAGE . . .
READPALETTE
SICONVERT
SI TO DOUBLE
S PDEC

CCOMMA.C
CHECKLONORIENTATION.C . . .
CLEANUP.C

F-26
F-27
F-27
F-28

. F-29
F-30
F-30
F-31
F-32
F-32
F-32
F-33
F-33
F-33
F-34
F-35
F-35
F-36
F-36
F-37
F-38
F-38
F-39
F-39
F-40

.. F-40
F-40
F-40
F-41
F-42
F-43
F-43
F-43
F-44
F-44

F-46
F-4 6F-47
F-48
F-48
F-49

. F-50
F-51
F-52
F-53
F-54
F-55
F-55
F-56
F-56
F-57
F-58

F-2

I

I

I
I
U

I
I
I

I

I
I

I
I

I
I

I

I
I

I

COORDINATES.FOR
DISPLAY COORD
ENTERCOORD

CREATEPA_DIR.C
DECIMAL.FOR
DTRPROCS.FOR

CLOSEADRG DTR FILE . .
DECODEDTRLATLON . . .
ENCODE DTR LATLON . . .
MODIFY DTR CHARTS CACED
OPEN_ADRG DTR FILE . . .
READADRGDTRRECORD . .

FCOMMA.C
FILEATTR PROCS.C

FILESIZE INIT
FILESIZESEND
FILESIZERET

FINDCAC_BITMAP.C
FIND FILE.FOR
GENERIC QUEUE STOPPED.FOR . .
GET DS SEGMENT_NAME.FOR . . .
GETODI DATA.C
GETPA SEGMENT NAME.FOR . . .
GETPID.FOR

GET PID
GETPIDASC

GET UNIX BINARYTIME.C .
IISPLOTPROCS.FOR

IIS IVAS INIT
IIS_8BIT INIT . . .
IISLABEL
IIS LABEL 8BIT
IISBORDER
IIS BORDER _BIT
IIS PLOT DRIVER
IISPLOTPROCS.INC . . .

LL MAXMIN.C
MAPDIR PROCS.C

BUILDSTRUCT
CAL ZONE COVERAGE . . .
CORNER IN BOUNDS . . .
DECIDETODEL NONPOLAR
DECIDE TO DEL_POLAR .
DELETE DIR
DEL ORSAVESEGMENT . .
DETERMINE_BOUNDS
ELIMINATE
GETCORNERS
GET CS TRIMMEDDIR . . .
GETDS DIR
GETDSTRIMMED DIR . . .
GETKEYFROMDSFILENAME

F-59
F-60
F-60
F-61
F-61.... F-62
F-62
F-62

.. ... F-63
F-63
F-63
F-64

.. F-64
... ... F-65

F-65
. F-65

F-66
F-66
F-68
F-69
F-70

.. ... F-71
F-74
F-75
F-75
F-75

.. F-76
F-77

... ... F-77
F-78
F-78
F-80
F-82
F-83
F-84
F-85
F-85
F-87
F-88
F-88
F-88
F-89
F-89

.. ... F-89
F-89
F-89
F-90
F-90

... ... F-90
F-90
F-90

..... .. F-90

F-3

. . .

. . .

. . .

GET KEY FROMFNAME . . .
GETLOGICALNAME
GETMAP DIR
GET PA NUM
GET ROW FROMFNAME . . .
LATLON IN CORNER . . .
MAKE DIR FILE
MAKEFILEDIR

QAL MAXMIN.C
QUAD_PROCS.C

QUADRANT LONGITUDEBOUNDS
QUADRANT LONGITUDERET
QUADRANT LONGITUDE NEXT

RC MAXMIN.C
SEND MAIL.FOR
SEND_MAILC.CTIMEM.mAR7
USEADRGLOGICALS.FOR

... F-90
. . . F-91
. . . F-91
. . . F-91
. . . F-91

F-91
. . . F-91
. . . F-92

F-92
. '. '. F-93

F-94
. . . F-94
. . . F-94
. . . F-95
. . . F-96
. . . F-97
. . . F-98

I. F-99

F-4

I

I

I
I

U

I

I
I

I

I
I
I
I

I

I

I

I
I

I

.. :
.:

......................

TOPIC FILE: CACSOURCECODE.HLP

The following text and subtopics appear when CAC SourceCode is
selected as an MDFFHELP subtopic:

The following text comprises this MDFFNELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 CACSourceCode

This topic provides software descriptions such as how to
call a particular subprogram and what setup information is
required (e.g., include files, variable declarations, etc.).

The programming languages used are included as file extensions:
routines written in FORTRAN have a file extension ".FOR" and
routines written in C have a file extension ".C".

F-5

CACSourceCode

This topic provides software descriptions such as how to
call a particular subprogram and what setup information is
required (e.g. include files, variable declarations,
etc.).

The programming languages used are included as file
extensions: routines written in FORTRAN have a file
extension ".FOR" and routines written in C have a file
extension ".C".

Additional information available:

Overview BITMAP APPL.C BITMAP ODI.C
BITMAPPROCS.C BITMAP SEGMENTSDAT.C BITMAPSOURCE.C
BITMAPTRANS.C BUILD_CD_ID.C CAC.C CAC MISC.C
CAC UTIL.C CCOMMA.C CHECK LON ORIENTATION.C
CLEAN UP.C COORDINATES.FOR CREATEPA-DIR.C
DECIMAL.FOR DTR PROCS.FOR
FCOMMA.C FILE ATTRPROCS.C FINDCACBITMAP.C
FIND FILE.FOR GENERIC QUEUE STOPPED.FOR
GET DS_SEGMENTNAME.FOR GET ODIDATA.C
GET PA SEGMENT NAME.FOR GET PID.FOR
GET UNIX_BINARY_TIME.C IIS PLOTPROCS.FOR
LL MAXMIN.C MAP DIR PROCS.C QAL7MAXMIN.C
QUADPROCS.C RC_MAXMIN.C SEND MAIL.FOR
SEND MAILC.C TIMEM.MAR USEADRG LOGICALS.FOR

f
I

2 Overview

Available functions are briefly described. The programming
languages used are included as file extensions: routines
written in FORTRAN have a file extension ".FOR" and routines
written in C have a file extension ".C".

BITMAPAPPL.C: A suite of high-level routines that perform
a variety of complex bitmap operations.

BITMAPODI.C: A suite of routines that create bitmaps from
the MDFF:SCRATCH:[000000]ODIBOUNDS.DAT file. 3

BITMAPPROCS.C: A suite of low-level routines that perform
a variety of basic bitmap operations. 3

BITMAPSEGMENTSDAT.C: A suite of routines that build bitmaps
from the SEGMENTS.DAT file.

BITMAPSOURCE.C: A suite of routines that build bitmaps from
downsampled and compressed segment data.

BITMAPTRANS.C: Combines two or more bitmaps. I
BUILDCDID.C: Creates the [ID]CDID file

according to the format of table 10 HTI I
specification.

CAC.C: A suite of routines that provide portable |
support for reading CAC CD-ROMs.

CACMISC.C: A suite of low-level CAC reader routines. 3
CACUTIL.C: A suite of high-level CAC reader routines.

CCOMMA.C: Places a comma(s) in an integer number. I
Can only be used with other C routines.

CHECKLONORIENTATION.C: Determines whether a minimum longitude I
and a maximum longitude are indeed the true
minimum and maximum longitude values for a
data set. |

CLEANUP.C: Transverses the current processing thread
directory structure and performs functions
necessary for trimming the chart ODI.

COORDINATES.FOR: Converts latitude/longitude coordinates into
their degrees, minutes, and seconds U
equivalents.

CREATEPADIR.C: --- TO BE ADDED LATER --- U
F-6

DECIMAL.FOR: Converts a coordinate (in character format)
to its decimal equivalent. Designed to work
with the routine COORDINATES.FOR

DTRPROCS.FOR: A suite of routines for converting to/from
Datatrieve data storage format.

FCOMMA.FOR: Places a comma(s) in an integer number.
Can only be used with other FORTRAN routines.

FILEATTRPROCS.C: A suite of routines that provide information
about VAX/VMS files and directories.

FIND CACBITMAP.C: Returns all CAC logged bitmap file names that
are stored in the MDFFSYSTEM:[BITMAPS]
directory for a given scale and zone.

FINDFILE.FOR: Uses search and file names to find a file.

GENERICQUEUE STOPPED.FOR: Determines whether a generic queue is
stopped.

GETDSSEGMENTNAME.FOR: Builds the path name for a downsampled
segment file.

GET ODIDATA.C: Reads mapstation subdirectories, extracts
row/column values and returns the sorted
(by ascending row) values.

GETPASEGMENTNAME.FOR: Builds the path name for a compressed
segment file.

GETPID.FOR: A suite of routines that obtain a Process
Identification (PID) code.

GETUNIXBINARYTIME.C: A suite of routines that convert a VAX
time string into the corresponding UNIX
binary time.

IISPLOTPROCS.FOR: A suite of routines that enable the
use of graphics device and generation
of hardcopy plots on the TEKTRONIX printer.

LLMAXMIN.C: A suite of routines that determine the true
pair of minimum and maximum coordinates
(Lat/Lon) from a set of coordinate pairs.

MAPDIRPROCS.C: A suite of routines that perform a variety
of operations on a MAP directory and the
files it contains.

F-7

QALMAXMIN.C: A suite of routines that use the ADRG QAL file
to determine the true minimum and maximum
latitude/longitude coordinates for polar
data.

QUADPROCS.C: A suite of routines that compute the minimum
and maximum latitude/longitude coordinates
for polar data.

RCMAXMIN.C:

SENDMAIL.FOR:

SENDMAILC.C:

TIMEM.MAR:

A suite of routines that determine the true
pair of minimum and maximum row/column values
from a set of row/column pairs.

Sends a VAX/VMS mail message from programs
written in FORTRAN programming language.

Sends a VAX/VMS mail message from programs
written in C programming language.

A C language routine that separates one
quadword into two longwords.

USEADRGLOGICALS. FOR: Inserts the specified processing thread's
logical name table into the LNM$FILEDEV
logical name search path.

2 BITMAPAPPL.C
Contains a suite of high-level routines that perform a variety of
complex bitmap operations. For additional information about
bitmaps, see MDFFHELP main topic BITMAPS.

3 IncludeFiles
There are two files that must be included for use with
BITMAPAPPL.C. Their names and brief descriptions follow.

V2_DIR:BITMAPAPPL.H Contains data definitions used by the
subroutines.

V2 DIR:DATADEFS.H Contains type definitions for common
variables (e.g., scale, zone)

The following subroutines are required for linkage. For
additional information about each subroutine, see MDFFHELP under
the main topic CACSOURCECODE.

I

I
BITMAPPROCS.C

LL MAXMIN.C

A Suite of low-level routines that perform a
variety of basic bitmap operations.

A suite of routines that determine the true
pair of minimum and maximum latitude/longitude
coordinates.

F-8

I
I
I
I
I
I

I
I

I

I
I
I

I
I
I
I

I

QUADPROCS.C

RCMAXMIN.C

C-.

r-

L.,

A suite of routines that compute the minimum and
maximum latitude/longitude coordinates for polar
data.

A suite of routines that determine the true
pair of minimum and maximum row/column values
from a set of row/column pairs.

3 Suite Description
BITMAPAPPL.C contains the following subroutines:

4 BITMAPAPPLINIT
This function is passed the chart scale of the data being
manipulated and should be invoked first, before any other routine
within this suite. The following syntax is used to invoke
bitmap_appl_init:

void bitmapappl_init (SCALE *mapscale)

4 BITMAP COUNT INIT
Sets the count of bitmaps for all zones to zero. There are no
values returned or arguments passed. The following syntax is
used to invoke bitmap_countinit:

void bitmap_countinit (void)

4 BITMAP FROM LATLON
When passed a scale, zone, and latitude/longitude coordinates of
the lower left and upper right corner of a rectangle, this
function builds a bitmap of this rectangle and returns the
minimum and maximum row/column values of the bitmap. The
following syntax is used to invoke bitmap_fromlatlon:

BIT *bitmap_fromlatlon (SCALE *mapscale, ZONE *mapzone,
LON *minlon, LON *maxlon,
LAT *minlat, LAT *maxlat,
COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

where
BIT

mapscale
mapzone
minlon
maxlon
minlat
maxlat
mncol
mxcol
mnrow
mxrow

The returned bitmap
Contains the chart scale
Contains the TS zone the data lie within
Contains the minimum segment longitude coordinate
Contains the maximum segment longitude coordinate
Contains the minimum segment latitude coordinate
Contains the maximum segment latitude coordinate
Contains the minimum segment column number
Contains the maximum segment column number
Contains the minimum segment row number
Contains the maximum segment row number

F-9

4 COMBINE BOXES RET
Combines all rectangles defined by the functions
"define boxessend" and "defineboxesperzone" into one bitmap
for a given zone. The following syntax is used to invoke U
combine-boxes-ret:

BIT *combine boxes ret (ZONE *zone) 3
where

BIT Is the returned bitmap
zone Contains the TS zone the data lie within |

4 DEFINEBOXESPERZONE
Is passed a rectangle that is contained within one (and only one) I
zone. The rectangle is defined by minimum and maximum
latitude/longitude coordinates. This function stores the
latitude/longitude and row/column coordinates in separate two- 4
dimensional arrays. The following syntax is used to invoke
defineboxes_per zone:

void define boxesperzone (ZONE *zone, LON *minlon, LON *maxlon,
LAT *minlat, LAT *maxlat)

where
zone Contains the TS zone the data lie within

minlon Contains the minimum segment longitude coordinate
maxlon Contains the maximum segment longitude coordinate
minlat Contains the minimum segment latitude coordinate I
maxlat Contains the maximum segment latitude coordinate

4 DEFINEBOXESSEND I
When passed in a rectangle defined by minimum and maximum
latitude/longitude coordinates, this function determines which U
zones the rectangle covers. It creates little rectangles, for
each zone and stores their latitude/longitude and row/column
coordinates in separate two-dimensional arrays. The following
syntax is used to invoke defineboxessend:

void define boxes send (LON *minlon, LON *maxlon,
LAT *minlat, LAT *maxlat)

where
minion Contains the minimum segment longitude coordinate
maxlon Contains the maximum segment longitude coordinate
minlat Contains the minimum segment latitude coordinate U
maxlat Contains the maximum segment latitude coordinate

4 GETBITMAPFROMDISK
Prompts user for a bitmap prefix name of a bitmap located in the
MDFF SYSTEM: [BITMAPS] directory, reads in this bitmap, and returns |

F-10

C-"

it to the calling point. The following syntax is used to invoke
get_bitmap_fromdisk:

BIT *getbitmapfromdisk (SCALE *mapscale, ZONE *mapzone,
char *filename, COL *mncol,
COL *mxcol, ROW *mnrow, ROW *mxrow)

where
BIT

mapscale
mapzone
filename

mncol
mxcol
mnrow
mxrow

The returned bitmap
Contains the chart scale
Contains the TS zone the data lie within
Contains the bitmap file name
Contains the minimum segment column number
Contains the maximum segment column number
Contains the minimum segment row number
Contains the maximum segment row number

4 GETCOORDS
Prompts user for the latitude/longitude coordinates of the lower
left corner and the upper right corner of a rectangle. The
following syntax is used to invoke get_coords:

unsigned char get coords (LON *minlon, LON *maxlon,
LAT *minlat, LAT *maxlat)

where
unsigned char

minlon
maxlon
minlat
maxlat

The return status value
Contains the minimum segment longitude coordinate
Contains the maximum segment longitude coordinate
Contains the minimum segment latitude coordinate
Contains the maximum segment latitude coordinate

4 MINMAXINIT
Once minimum and maximum row/column values are determined, this
function should be invoked to pass these values to other
bitmapappl routines. The following syntax is used to invoke
minmaxinit:

void minmaxminit (ZONE *zone, COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

zone
mncol
mxcol
mnrow
mxrow

Contains the TS zone the data lie within
Contains the minimum segment column number
Contains the maximum segment column number
Contains the minimum segment row number
Contains the maximum segment row number

F-ll

where

4 STORE BOXCOORDINATES
Stores the row/column and latitude/longitude coordinates of the
lower left and upper right corners of a defined rectangle into
separate two-dimensional arrays. The following syntax is used to
invoke storeboxcoordinates:

void storeboxcoordinates (ZONE zone)

where
zone Contains the TS zone the data lie within

2 BITMAPODI.C
Contains a suite of C language routines that create bitmaps from
the MDFF SCRATCH: [000000]ODIBOUNDS.DAT file. The ODIBOUNDS.DAT
file is stored in the MDFFSCRATCH:[000000] directory for the
current processing thread. Subtopics include requirements and
individual routines that are contained within the suite.

3 IncludeFiles
There are two files that must be included for use with
BITMAPODI.C. Their names and a brief description follow.

V2_DIR:BITMAPODI.H

V2 DIR:DATA DEFS.H

Contains data definitions used by
subroutines within the suite.

Contains type definition for common
variables (e.g., chart scale, zone)

The following subroutines are required for linkage. For I
additional information about each subroutine, see MDFFHELP under
the main topic CAC SOURCE CODE. M

BITMAPAPPL.C

BITMAPPROCS.C

LLMAXMIN.C

ODI_BOUNDS.C

QUADPROCS.C

RCMAXMIN.C

A suite of high-level routines that perform
complex bitmap application functions.

A suite of low-level routines that perform a
variety of basic bitmap operations.

A suite of routines that determine the true
pair of minimum and maximum coordinates.

NOT YET ADDED TO MDFFHELP

A suite of routines that compute the minimum
and maximum latitude/longitude coordinates for
polar data.

A suite of routines that determine the true
pair of minimum and maximum row/column values
from a set of row/column pairs.

F-12

I
I

I
I

I
I

I
I

I

I
l
l
I

I

I
I

l

3 Suite Description
BITMAPODI.C contains the following subroutines:

4 BUILDODIBOUNDSBITMAP
When passed a scale and zone, this function builds a bitmap using
the bounds from the ODIBOUNDS.DAT file. The bitmap's
minimum/maximum row/column values are returned and are set to
accommodate the ODI bounds. The following syntax is used to invoke
buildodi boundsbitmap:

BIT *build odi boundsbitmap (SCALE *mapscale, ZONE *mapzone,
COL *mncol, COL *mxcol, ROW *mnrow,
ROW *mxrow)

where
BIT The returned bitmap

mapscale Chart scale (passed)
mapzone TS zone number (passed)
mncol,mxcol minimum & maximum column numbers (returned)
mnrow,mxrow minimum & maximum row numbers (returned)

5 Example
The following code segment provides an example of usage.

BIT *map; /* The bitmap
SCALE mapscale; /* chart scale
ZONE mapzone; /* TS zone number */
ROW minrow, maxrow; /* minimum & maximum row #s */
COL mincol, maxcol; /* minimum & maximum column #s */

mapscale = 5;
mapzone = 4;

/* After this call, map will be a pointer to a new */
/* bitmap that has been created bounds to house the */
/* odi for the zone requested (zone 4, in this case) .*/
/* The minimum/maximum row/column values of the
/* bitmap (map) will be returned.

map = build odi bounds_bitmap2 (&mapscale, &mapzone,
&mincol,
&maxcol,
&minrow,
&maxrow);

4 BUILDODIBOUNDSBITMAP2
When passed a scale and zone, this function builds a bitmap using
the bounds from the ODIBOUNDS.DAT file. Additionally, these
bounds may be modified by the user. Alternate bounds, determined
by the user, can be used for the bitmap's minimum/maximum
row/column values and must be passed to the module BITMAPAPPL.C

F-13

(see BITMAPAPPL.C) prior to invoking this routine. The following
syntax is used to invoke buildodibounds_bitmap:

BIT *buildodi bounds bitmap2 (SCALE *mapscale, ZONE *mapzone)

where
BIT The returned bitmap

mapscale The chart scale (passed)
mapzone The TS zone number (passed)

5 Example
The following code segment provides an example of usage.

BIT *map; /* the bitmap
SCALE mapscale; /* chart scale
ZONE mapzone; /* TS zone number */
ROW minrow, maxrow; /* minimum & maximum row #s */
COL mincol, maxcol; /* minimum & maximum column #s */

mapscale = 5;
mapzone = 4;

/* These are the user-selected min/max row/col bitmap values */
minrow = 100;
maxrow = 125;
mincol = 150;
maxcol = 175;

/* The min/max values are passed to the routine minmaxinit */
/* (contained within the module BITMAPAPPL.C) to obtain a */
/* value for mapzone. mapzone is an argument used by the
/* buildodiboundsbitmap2 routine.

minmaxminit (&mapzone, &mincol, &maxcol, &minrow, &maxrow);

/* After this next call, map will be a pointer to the new */
/* bitmap that has been created to house the odi bounds */
/* for the zone requested (zone 4, in this case). Note, */
/* the minimum/maximum values of the bitmap (map) are the */
/* same minimum/maximum values that were passed to the */
/* minmaxinit routine. */

map = build odi boundsbitmap2 (&mapscale, &mapzone);

2 BITMAPPROCS.C
Contains a suite of low-level C language routines that perform
a variety of basic bitmap operations. Subtopics include
requirements, individual routines within the suite, and an
example of usage.

F-14

C-

-- 1
3 Requirements

4 Include Files
The file, "V2 DIR:BITMAPPROCS.H", contains data definitions that
are used by suite routines and must be included in the source
code.

4 Global Variables
Global variables, which must be declared external (i.e.,
"extern"), include the following:

long maxrow, maxcol;

long minrow, mincol;

long total-bits;

long numrows;

long numcols;

The maximum row and column values of
data in the bitmap.

The minimum row and column values of
data in the bitmap.

Total number of bits in the bitmap.

Number of rows in the bitmap.

Number of cols in the bitmap.

3 Suite Description
BITMAPPROCS.C contains the following routines:

4 ADD BUF_TOBM
Adds two rows of clear bits around the bitmap. This is performed
so that the routines used to traverse the bitmap do not have to
check for bounds. The following syntax is used to invoke
addbuf to bm:i

void addbufto bm (void)

4 BITMAPINIT
Should be invoked before a bitmap is created. This function adds
a two-position wide buffer to the minimum and maximum values,
determines the number of rows and columns the bitmap will need in
order to hold the data, and computes the total bits needed to
construct the bitmap. The following syntax is used to invoke
bitmap_init:

void bitmap_init (long *mnrow, long *mncol,
long *mxrow, long *mxcol)

where
long maxrow, maxcol;

long minrow, mincol;

The maximum row and column values of
data in the bitmap.

The minimum row and column values of
data in the bitmap.

F-15

4 CHECKDOWN
Determines whether the bit, which is located below the bit passed
in, is set. The following syntax is used to invoke checkdown:

long checkdown (BIT map[], long *bitrow, long *bitcol)

where
long

BIT map[]
long bitrow
long bitcol

I

Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

I

I

I4 CHECKDOWN LEFT
Determines whether the bit, which is located below and to the left
of the bit passed in, is set. The following syntax is used to
invoke checkdown left: I

long checkdownleft (BIT map[], long *bitrow, long *bitcol)

where
long

BIT map[]
long bitrow
long bitcol

Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

4 CHECKDOWN RIGHT
Determines whether the bit, which is located below and to the
right of the bit passed in, is set. The following syntax is used
to invoke checkdownright:

long <checkdownright (BIT map[), long *bitrow, long *bitcol)

where
long

BIT map[]
long bitri
long bitci

l
Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
ow The bitmap's row value
0l The bitmap's column value

4 CHECKLEFT
Determines whether the bit, which is located to the left of the
bit passed in, is set. The following syntax is used to invoke
checkleft:

F-16

I

I

I

I

I

I

I

I

I

I

I

I

long checkleft (BIT map[], long *bitrow, long *bitcol)

where
long

BIT map[]
long bitrow
long bitcol

Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

4 CHECK RIGHT
Determines whether the bit, which is located to the right of the
bit passed in, is set. The following syntax is used to invoke
checkright:

long check-right (BIT map[], long *bitrow, long *bitcol)

where
long

BIT map[]
long bitrow
long bitcol

Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

4 CHECK UP
Determines whether the bit, which is located above the bit passed
in, is set. The following syntax is used to invoke checkup:

long checkup (BIT map[], long *bitrow, long *bitcol)

where
long

BIT map[]
long bitrow
long bitcol

Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

4 CHECK UPLEFT
Determines whether the bit, which is located above and to the left
of the bit passed in, is set. The following syntax is used to
invoke checkup_left:

long checkupleft (BIT map[], long *bitrow, long *bitcol)

where
long Return status that will possess one of the

following values:

F-17

I

BIT map[]
long bitrow
long bitcol

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

I

I
4 CHECKUPRIGHT
Determines whether the bit, which is located above and to the
right of the bit passed in, is set. The following syntax is used
to invoke checkup_right:

long checkupright (BIT map[], long *bitrow, long *bitcol)

I

where
long

BIT map[]
long bitrow
long bitcol

I

I
Return status that will possess one of the
following values:

FALSE if the above bit is set
TRUE if the above bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

I

I4 CLEARBIT
Clears a bit in the bitmap. The bit is determined by the bitmap's
row and column that are passed as arguments. The following syntax
is used to invoke clearbit:

void clear-bit (BIT map[], long *bitrow, long *bitcol)

I

BIT map[]
long bitrow
long bitcol

The bitmap
The bitmap's row value
The bitmap's column value

4 CLEARBITMAP
Clears every bit contained within the bitmap. The following
syntax is used to invoke clear-bitmap:

void clear bitmap (BIT map[])

BIT map[] The bitmap

4 CLOSEBITMAPFILE
Closes a binary file that contains a bitmap. The following syntax
is used to invoke closebitmap_file:

void close bitmap_file (long *filedesc)

long filedesc Binary file descriptor

F-18

where I

where

1

I

where

I

I

I

I

I

I

I

4 CONVERT _BM _TO _RC
Uses bitmap row and column values to determine the equivalent row
and column values of the original data. The following syntax is
used to invoke convert bm to rc:

void convert bmtorc (long *bitrow, long *bitcol,
long *row, long *col)

where
long bitrow The bitmap's row value
long bitcol The bitmap's column value
long row The original data's row value
long col The original data's column value

4 CONVERTRCTOBM
Uses original data row and column values to determine the
equivalent bitmap row and column values. The following syntax is
used to invoke convertrc to bm:i

void convertrctobm (long *row, long *col,
long *bitrow, long *bitcol)

where
long row The original data's row value
long col The original data's column value
long bitrow The bitmap's row value
long bitcol The bitmap's column value

4 COPYBITMAP
Takes in a source bitmap and copies it to a destination bitmap.
The following syntax is used to invoke copybitmap:

void copy bitmap (BIT destination[], BIT source[])

where
BIT destination[) The destination bitmap
BIT source[] The source bitmap

4 CREATEBITMAP
Returns a pointer to a bitmap by allocating the total number of
bits needed to contain the data. A function to clear the bitmap
is then called. The following syntax is used to invoke
createbitmap:

BIT *createbitmap (void)

4 DESTROYBITMAP
Releases memory, that has been reserved for the bitmap, back to
the system. The following syntax is used to invoke destroy_bitmap:

void destroy_bitmap (BIT map[])

4 DUMPBITMAP

F-19

Writes an ASCII representation of the bitmap into the specified
file. The following syntax is used to invoke dump_bitmap:

void dumpbitmap (FILE *filedesc, BIT map[])

FILE filedesc
BIT map[]

The file specification
The bitmap

4 INDEX
When passed a valid bitmap row and column, this function returns
an index to that row and column in the bitmap. The following
syntax is used to invoke index:

long index (long *bitrow, long *bitcol)

where
long
long bitrow
long bitcol

4 ISCLEAR
Returns TRUE if the
column value passed
to invoke is-clear:

returns the index value
bitmap row value
bitmap column value

bit, as determined by the bitmap row and
in, is cleared. The following syntax is used

long isclear (BIT map[], long *bitrow, long *bitcol)

long

BIT map[]
long bitrow
long bitcol

I
Returns the status, contains one of
following values:

TRUE if the bit is clear
FALSE if the bit is not clear

The bitmap
The bitmap's row value
The bitmap's column value

4 ISSET
Returns TRUE if the bit, as determined by the bitmap row and
column values passed in, is set. The following syntax is used to
invoke is-set:

long is_set (BIT map[), long *bitrow, long *bitcol)

long

BIT map[]
long bitrow
long bitcol

Returns the status, contains one of
following values:

TRUE if the bit is set
FALSE if the bit is not set

The bitmap
The bitmap's row value
The bitmap's column value

F-2 0

where

I

I

I

I.

I

I

I

where

I

I

where

I

I

I

I

I
I

I

I

I

4 MERGEBITMAPS
This function merges two bitmaps. The merged bitmap, specified as
the destination, is returned. The bitmaps must be of the same
dimension. The following syntax is used to invoke mergebitmap:

void merge_bitmaps (BIT destination[], BIT source[])

where
BIT destination[] One of the bitmaps to be merged and also

the destination bitmap
BIT source[] The other source bitmap to be merged

4 OPENBITMAPFILE
Opens a binary file, in which a bitmap may be stored, and returns
a file descriptor to the open file. The following syntax is used
to invoke openbitmap_file:

long open-bitmap-file (char filename[])

where
long Returned open file descriptor
char filename The name of the binary file

4 READIN BITMAP
Reads a bitmap from the binary file that is defined by the file
descriptor. Use the routine, openbitmap_file, to open the binary
file (see subtopic open bitmap_file). The following syntax is
used to invoke readin=bitmap:

BIT *readinbitmap (long *filedesc)

where
BIT map[] The bitmap to be read
long filedesc Binary file descriptor

4 REMOVEBUFFROMBM
Removes the two rows of clear bits (that were added by the
function addbuf_to_bm) around the bitmap. The following syntax
is used to invoke removebuffrom_bm:

void remove buf from bm (void)

4 SETBIT
Sets a bit in the bitmap. The bit is determined by the bitmap's
row and column that are passed as arguments. The following syntax
is used to invoke setbit:

void set-bit (BIT map[], long *bitrow, long *bitcol)

where
BIT map[] The bitmap
long bitrow The bitmap's row value

F-21

long bitcol The bitmap's column value

4 SETBITMAP
Sets every bit contained within the bitmap. The following
syntax is used to invoke setbitmap:

void set bitmap (BIT map[])

where
BIT map[]

I
The bitmap

4 TOGGLEBIT
Toggles the state of a bit within the bitmap. The bit is
determined by the bitmap's row and column that are passed as
arguments. The following syntax is used to invoke togglebit:

void toggle_bit (BIT map[], long *bitrow, long *bitcol)

BIT map[]
long bitrow
long bitcol

The bitmap
The bitmap's row value
The bitmap's column value I

4 WRITEOUT BITMAP
Writes a bitmap into the binary file that is defined by the file
descriptor. Use the routine, open bitmap_file, to open the binary
file (see subtopic open-bitmapfile). The following syntax is
used to invoke write outbitmap:

void write out bitmap (long *filedesc, BIT map[])

long filedesc
BIT map[]

Binary file descriptor I
The bitmap to be written

3 Example
The following C language program provides examples of usage.

#include "bitmap_procs.h"
#include "v2 dir:map_dirprocs.h"

BIT *bitmap;
struct coord POINTS [MAXSEG);

main ()
{
long i;
long count;
long bitrow, bitcol;
FILE *fp;

long filedesc;

/* Number of Segments in a zone. */
/* Actual row/col index in bitmap. */
/* File where ASCII bitmap will be */
/* dumped.
/* File descriptor of bitmap

F-22

I

I

I

where

I
I

where

l
I

I

I
I
I
I

I

I

I

/* memory file.
long scale, zone;

long mncol, mnrow, mxcol, mxrow; /* Min/Max values of data to */
/* be placed in the bitmap. */

char ascii filename[] = "bit.out"; /* ASCII Dump of bitmap. */
char memory_filename[] = "imem.out"; /* Memory Dump of bitmap. */

/ ***/
/* Enter Scale and Zone to be placed in bitmap */

scale = 3;
zone 2;

/ ***/
/* Open the ASCII bitmap file.
/ ***/
if ((fp = fopen (asciifilename, "w")) == NULL)

printf ("ERROR: Opening output file\n");
exit (0);

}

/ ***/
/* Place all segments in a array of records. */

count = 0;
count = plot_segments (POINTS, zone);

/ ***/
/* Find Max/Min values for data.

rcmaxminiinit (&scale, &zone);

for (i=0;i<count;i++)
rcmaxminsend ((&(POINTS[i].row)), (&(POINTS[i].col)));

rc maxmin ret (&mncol, &mxcol, &mnrow, &mxrow);

/ ***/
/* Initialize the variables the bitmap needs */
/* and create a cleared bitmap with enough
/* memory allocated to hold all segments in
/* in the given zone and a two row/col buffer */
/* of clear bits.

bitmap_init (&mnrow, &mncol, &mxrow, &mxcol);
bitmap = createbitmap (;

/* For each segment in the array of records, */

F-23

/* determine the bit row and bit index into
/* the bitmap and set that bit./1***/I
for (i=0;i<count;i++)

convertrc to bm ((&(POINTS[i].row)), (&(POINTS[i].col)),
&bitrow, &bitcol);

set_bit (bitmap, &bitrow, &bitcol); I
}

/* Now that the bitmap has been created and */ -
/* filled, open a bitmap file and write the
/* bitmap to disk. Close the bitmap file when */
/* finished. *

filedesc = open bitmapfile (memory_filename);
write out bitmap (&filedesc, bitmap);
closebitmapfile (&filedesc);

, **** *** ****** ***** ***** *** *******************,l
/* Now that the bitmap has been saved, return */
/* bitmap's memory back to the system.

destroy bitmap (bitmap);

/* Read in the bitmap from the memory file. *
/ ***/

filedesc = open bitmap file (memoryfilename);
bitmap = read-in bitmap (&filedesc);
close_bitmap_file (&filedesc);

/* Dump the bitmap to the ASCII file and close it */ U
/ **/
dumpbitmap (fp, bitmap);
fclose (fp); /* ASCII Bitmap Dump File */ I
return;

} ~~~~~~~~~~~~~I

2 BITMAPSEGMENTSDAT.C
Contains a suite of C language routines that build bitmaps fromthe SEGMENTS.DAT file. The SEGMENTS.DAT file is defined for the
current processing thread. Subtopics include requirements and
individual routines within the suite.

3 Include Files
The following file must be included for use with I

F-24

C-

C>d

r-
1_'

BITMAPSEGMENTSDAT. C:

V2 DIR:DATADEFS.H Contains type definition for common
variables (e.g., scale, zone)

r.-

The following subroutines are required for linkage. For
additional information about each subroutine, see MDFFHELP under
the main topic CAC SOURCECODE.

BITMAPAPPL.C

BITMAPPROCS.C

LLMAXMIN.C

QUADPROCS.C

RCMAXMIN.C

A suite of high-level routines that perform
a variety of complex bitmap operations.

A suite of low-level routines that perform a
variety of basic operations on a bitmap.

A suite of routines that determine the true
pair of minimum and maximum coordinates.

A suite of routines that compute the minimum
and maximum latitude/longitude coordinates for
polar data.

A suite of routines that determine the true
pair of minimum and maximum row/column values
from a set of row/column pairs.

3 Suite Description
BITMAP_SEGMENTSDAT.C contains the following subroutines:

4 BUILDSEGMENTSDATBITMAPS
Converts each zone within the SEGMENTS.DAT file to a bitmap and
places pointers to these bitmaps in an array. The array is
dimensioned from 0 to (number of zones - 1). If a zone is not
present within the SEGMENTS.DAT file, the array position for that
zone will be NULL. The following syntax is used to invoke
buildsegmentsdat_bitmaps:

void build segmentsdat bitmaps (SCALE *mapscale,
BIT *coverage[NUMZONES])

where
BIT

mapscale

coverage[NUMZONES]

The Bitmap for the specified scale and zone
(returned)
Contains the chart scale

Contains the bitmap for the area of
coverage
(returned)

5 Example
The following code segment provides an example of usage.

F-25

BIT maps[NUMZONES];
SCALE scale;

scale = 4;

buildsegmentsdat bitmaps (&scale, maps); *

/* If the SEGMENTS.DAT file contains two zones, for example */
/* 2 and 3, the array (maps) will look like this: */ I
maps[0] = NULL
maps[l] = NULL I
maps[2] = (some address to a bitmap containing zone 2 data)
maps[3] = (some address to a bitmap containing zone 3 data)
maps[4] = NULL

4 COVERAGE FROM SEGMENTSDAT
Returns a bitmap of the data in the SEGMENTS.DAT file for a
specified scale and zone. The minimum/maximum row/column values I
of the bitmap are returned. The following syntax is used to
invoke coveragefromsegmentsdat:

BIT *coverage_fromsegmentsdat (SCALE *mscale, ZONE *zone,
COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

Where I
BIT The Bitmap for the specified scale and zone

(returned)
mscale Contains the chart scale I

(passed)
zone Contains a TS zone

(passed)
mncol,mxcol Contains minimum and maximum column values

(returned)
mnrow,mxrow Contains minimum and maximum row values

(returned)

5 Example
The following code segment provides an example of usage.

BIT *map;
SCALE scale;
ZONE zone;

scale = 4;
zone = 3;

/* This invocation will return a bitmap of the data in the
/* SEGMENTS.DAT file for a specified scale and zone. The *
/* minimum/maximum row/column values of the bitmap are returned.*/

I
F-2 6

map = coverage_fromsegmentsdat (&scale, &zone, &mincol, &maxcol,
&minrow, &maxrow);

2 BITMAPSOURCE.C
Contains a suite of C language routines that build bitmaps from
downsampled and compressed segment data. Subtopics include
requirements and individual routines within the suite.

3 IncludeFiles
The following files must be included for use with BITMAP SOURCE.C:

V2_DIR:BITMAPSOURCE.H

V2_DIR:DATA DEFS.H

Contains data definitions used by the
subroutines.

Contains type definitions for common
variables (e.g., scale, zone)

The following routines are required for linkage. For additional
information about each subroutine, see MDFFHELP main topic
CAC SOURCECODE.

BITMAPAPPL.C

BITMAPPROCS.C

LLMAXMIN.C

QUADPROCS.C

RC_MAXMIN.C

A suite of high-level routines that perform
a variety of complex bitmap operations.

A suite of low-level routines that perform a
variety of basic operations on a bitmap.

A suite of routines that determine the true
pair of minimum and maximum coordinates.

A suite of routines that compute the minimum
and maximum latitude/longitude coordinates for
polar data.

A suite of routines that determine the true
pair of minimum and maximum row/column values
from a set of row/column pairs.

3 Suite Description
BITMAPSOURCE.C contains the following subroutines:

4 BITMAPDSSOURCE
Is passed a device name that contains downsampled data (i.e.
CHARTSEGMENTS:) and builds a bitmap of this data. The bitmap,
built with the minimum and maximum row/column values that were
also passed as arguments, is returned. The following syntax is
used to invoke bitmap_ds source:

F-27

BIT *bitmap_dssource (char *s, SCALE *mscale, ZONE *zone,
COL *mncol, COL *mxcol, X
ROW *mnrow, ROW *mxrow)

where
BIT The returned bitmap

s Contains the device name
(passed)

mscale Contains the map scale
(passed) I

zone Contains the TS zone number
(passed)

mncol Contains the minimum column number
(passed)

mxcol Contains the maximum column number
(passed)

mnrow Contains the minimum row number
(passed)

mxrow Contains the maximum row number
(passed)

4 BITMAPMAP SOURCE
Is passed a device name (i.e., CHARTODIDISK: or CDROM01:), and
builds a bitmap of the data that are contained on this device.
The
bitmap, having the minimum and maximum row/column values that were
passed as arguments, is returned. The following syntax is used to I
invoke bitmap_map_source:

BIT *bitmap_map_source (char *device, SCALE *mscale, ZONE *zone, 5
COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

where
BIT The returned bitmap

device Contains the device name
(passed)

mscale Contains the map scale I
(passed)

zone Contains the TS zone number
(passed) -

mncol Contains the minimum column number
(passed)

mxcol Contains the maximum column number
(passed)

mnrow Contains the minimum row number
(passed)

mxrow Contains the maximum row number X
(passed)

5 Example
The following code segment provides an example of usage.

/* path to data to be placed in bitmap. */

F-28

path = "CDROM01:"1;

/* call this first.... located in CACUTIL.C. */
cacinit (path);

/* Get scale and zone. */
scale = cac.mapscale;

/* Get the minimum and maximum row/col values of the data. */
get_minmaxfromcacid (&zone, &mncol, &mxcol, &mnrow, &mxrow);

/* Return (i.e., create) a bitmap that is named map. */
map = bitmap_mapsource (path, &scale, &zone,

&mncol, &mxcol,
&mnrow, &mxrow);

4 GETMINMAXFROM CACID
Extracts the minimum and maximum row/col values from a CAC CD-ROM.
The function "cac init" (see subtopic CAC UTIL.C) must be invoked
prior to use of this function. The following syntax is used to
invoke getmininmaxfrom cacid:

void getminmaxfromcacid (short *zone,
COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

where
zone Contains the TS zone number

(passed)
mncol Contains the minimum column number

(returned)
mxcol Contains the maximum column number

(returned)
mnrow Contains the minimum row number

(returned)
mxrow Contains the maximum row number

(returned)

5 Example
The following code segment provides an example of usage.

/* path to data to be placed in bitmap. */
path = "CDROM01:";

/* call this first....located in CACUTIL.C. */
cacinit (path);

/* Get scale and zone. */
scale = cac.map_scale;

/* Get the minimum and maximum row/col values of the data. */
get minmaxfrom cacid (&zone, &mncol, &mxcol, &mnrow, &mxrow);

F-29

/* Return (i.e., create) a bitmap that is named map. */
map = bitmap_map_source (path, &scale, &zone,

&mncol, &mxcol,
&mnrow, &mxrow);

4 GETMINMAXFROMDS S
Is passed a device name where downsample segments are housed
(e.g., CHARTSEGMENTS:) and returns the minimum and maximum
row/col values of the data. The following syntax is used to I
invoke get minmax from ds:

void getminmaxfromds (char *device, SCALE *mscale, ZONE *zone, I
COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

where
device Contains the device name -

(passed)
mscale Contains the map scale

(passed) I
zone Contains the TS zone number

(passed)
mncol Contains the minimum column number

(returned)
mxcol Contains the maximum column number

(returned)
mnrow Contains the minimum row number I

(returned)
mxrow Contains the maximum row number

(returned) I

4 GETMINMAXFROMMAP I
Is passed a device name (i.e., CHARTODIDISK: or CDROM01:), and
returns the minimum and maximum row/col values of the data that
are contained in the MAP Directory. The following syntax is used
to invoke getminmaxfrommap:

void getminmaxfrommap (char *device, SCALE *mscale, ZONE *zone,
COL *mncol, COL *mxcol, I
ROW *mnrow, ROW *mxrow)

where
device Contains the device name

(passed)
mscale Contains the map scale

(passed)
zone Contains the TS zone number J

(passed)
mncol Contains the minimum column number

(returned) I
mxcol Contains the maximum column number

(returned)
mnrow Contains the minimum row number |

F-30

(returned)
mxrow Contains the maximum row number

(returned)

2 BITMAP TRANS.C
Combines two or more differently sized bitmaps into one bitmap.
The bitmaps that are to be combined must be stored on disk.

BITMAPTRANS.C contains three subroutines. In order to work
correctly, all three routines must be called in proper order.

3 IncludeFiles
The following files must be included for use with BITMAPTRANS.C:

MDFFSCR:BITMAPTRANS.H Contains data definitions used by the
subroutines.

MDFFSCR:DATADEFS.H Contains type definition for common
variables (e.g., scale, zone)

The following subroutines are required for linkage. For
additional information about each subroutine, see MDFFHELP under
the main topic CACSOURCECODE.

BITMAP APPL.C A suite of high-level routines that perform a
variety of complex bitmap operations.

RC_MAXMIN.C A suite of routines that determine the true pair
of minimum and maximum row/column values from a
set of row/column pairs.

BITMAP PROCS.C A suite of low-level routines that perform a
variety of basic operations on a bitmap.

3 Example
The following pseudocode provides an example correct usage.

call BITMAPTRANSINIT (scale, zone) ! This sets up the variables
! used by the next two calls.
! This routine MUST be called
! first. Scale and zone are
! INTEGER*4 and passed by
! reference.

! Loop through the number of bitmaps that are to be combined into
I one bitmap

LOOP 1 TO NumberOfBitmaps

F-31

! Send in as many bitmap filenames as you like.
! The filename must include the complete path.
! Filename is a character string pointer and is
passed by reference.

call BITMAPTRANSSEND (filename)

END LOOP

! This is the final routine and MUST be called last. It returns
! the one combined bitmap and its minimum/maximum row/column
! values. Arguments are passed by reference a
bitmap = bitmap_trans_ret (mincol, maxcol, minrow, maxrow)

3 Suite Description X
BITMAP TRANS.C contains the following subroutines:

4 BITMAPTRANSINIT I
This routine must be invoked first. It is used to initialize
variables used by the other routines. The following syntax is used
to invoke BITMAPTRANSINIT:

void bitmap_transinit (SCALE *mapscale, ZONE *mapzone)

where I
mapscale INTEGER*4 Contains the chart (i.e., map) scale

(passed by reference) l

mapzone INTEGER*4 Contains a TS zone
(passed by reference)

4 BITMAPTRANS SEND
This routine is used to specify filenames of the bitmaps that are
to be combined. Hence, it should be invoked iteratively; each of
these bitmaps will be combined to form one larger bitmap. The
bitmap filenames must include the complete path specification I
(i.e., device and directory names). The following syntax is used
to invoke BITMAPTRANSSEND:

void bitmap_transsend (char *filename) I
where

filename contains a character string pointer
(passed by reference)

4 BITMAPTRANS RET
This is the final routine and MUST be called last. It returns the
one combined bitmap and its-minimum and maximum row/column values. I

F-32

I

The following syntax is used to invoke BITMAPTRANSRET:

BIT *bitmap_trans_ret (COL *mncol, COL *mxcol,
ROW *mnrow, ROW *mxrow)

where
mncol,mxcol

mnrow, mxrow

Contains the minimum and maximum column values
(returned)
Contains the minimum and maximum row values
(returned)

2 BUILDCDID.C

---------- TO BE ADDED LATER ------------

2 CAC.C
CAC.C contains a suite of C language routines that provide
portable support for reading CAC CD-ROMs. Individual routines
include:

CACINIT: Initializes the CAC retrieval software.

CACINQ PALETTE: Returns the "day" or "night" color palette
for current palette id.

CACGETLL:

CACGETRC:

Returns the color of the pixel at the
specified latitude and longitude. Also
returns the address of the entire
decompressed segment, if desired.

Returns the address of the entire decompressed
segment specified by the row, column, and map
zone.

BUFFERCOMPRESSEDSEGMENT: Low level routine used by "CAC GET LL"
and "CAC GET RC". This routine SHOULD NOT be
called by users at a high level! See MAIN LL.C
and MAINRC.C for examples on implementation of
CAC reader software.

Subtopics provide more detailed descriptions of each routine
within the suite.

3 CACINIT
Reads the [ID]CDID.DAT and [ID]CDCOVRG.DAT files from the
specified device. Initializes the internal CAC work structure
based on the contents of the [ID]CD ID.DAT and [ID]CDCOVRG.DAT
files.

4 Invocation

F-33

C-

r-

CACINIT is invoked with the following syntax:

short CACINIT (char cacdevice[]) X

Where
cac device: Name of device that CAC CD-ROM is loaded on. a

(passed, char[])

CACINIT returns one of the following status values: 3
Status: Meaning

1 : Normal
-1 : Error reading [ID]CDID.DAT
-2 : Error reading [ID]CDCOVRG.DAT
-3 : CDROM is NOT a CAC CDROM

3 CACINQPALETTE |
Returns the color palette for the specified PA ID. Reads the
color palette file for the specified palette ID. The color
palette size is returned along with three arrays containing I
the red, green, and blue components of the specified color
palette. In addition, the "day" or "night" color palette may be
returned. I

4 Invocation
CACINQPALETTE is invoked with the following syntax: j

short CACINQPALETTE (char type,
short palid,
short *size, I
byte red[],
byte green[],
byte blue[]) I

Where
type: Type of palette to load (DAY or NIGHT)

(passed, char)

palid: Palette identification. This is a four digit number
identifying the color palette to use for the |
selected segment.
(passed, int)

size: Size of the color palette returned. I
(returned, short *)

red: Array of size "size" containing the RED component of
the color palette.
(returned, char []) I

green: Array of size "size" containing the RED component of
the color palette.
(returned, char []) I

F-34

l

blue: Array of size "size" containing the RED component of
the color palette.
(returned, char [])

CACINQPALETTE returns one of the following status values:
Status: Meaning

1 : Normal
-1 : Error opening PALETTE.DAT file
-2 : Error reading PALETTE.DAT file

3 CAC GET LL
Returns the value of the pixel at the specified latitude/longitude
position. Also supplies a pointer to the entire decompressed
segment if requested.

4 Invocation
CAC_GET_LL is invoked with the following syntax:

short CACGETLL (float lon,
float lat,
short *palid,
short *color)

Where:
lon: Longitude of requested pixel.

(passed, float)

lat: Latitude of requested pixel.
(passed, float)

palid: Palette identification of pixel at lat/lon.
(returned, short *)

color: Pixel value at specified lat/lon. This is the index
into the color palette.
(returned, short *)

CAC_GET_LL returns one of the following status values:
Status: Meaning

1: Normal
-1: Specified lat/lon does NOT fall with bounds

specified in the CDCOVRG.DAT file. The data is
NOT on this CD-ROM.

3 CAC GET-RC
Returns the decompressed segment at the specified row/column. The
map zone is required in order to process zone overlap correctly.

4 Invocation

F-35

CACGETRC is invoked with the following syntax: |

short CAC GET RC (long row,
long col,
short mapzone, 2
short *palid)

Where|
row: Row of requested segment.

(passed, long)

col: Column of requested segment. I
(passed, long)

mapzone: TS map zone that the requested segment is in.
This is used to allow specifying segments in
zone overlap areas.
(passed, short) 5

palid: Palette identification of segment at row/column.
(returned, short *)

CAC GET RC returns one of the following status values:
Status: Meaning

1: Normal I
-1: Specified map zone is NOT on this CDROM.
-2: Specified segment at row/column is NOT on this CD-ROM.

3 BUFFER-COMPRESSED SEGMENT
Performs the reading and decompression of a segment.
Low level routine used by "cac get-11" and "cac_getrc" to
decompress a segment. This routine is NOT user callable.

4 Invocation
BUFFERCOMPRESSED SEGMENT is invoked with the following syntax:

short BUFFERCOMPRESSEDSEGMENT() 3
There are NO arguments. All information to read and decompress
a segment is in the structure "CAC". -

BUFFERCOMPRESSEDSEGMENT returns one of the following status
values:

Status: Meaning
1: Normal

2 CACMISC.C I
Contains low-level CAC reader software that is written in C
programming language. Most users should not require these
routines: the high-level CAC reader routines (see subtopic

F-36

CACUTIL) will be sufficien

3 Include-files
The following files must be

#include <stdio.h>

#include "ansi.h"

#include "sysdep.h"

#include "sysutil.h"

#include

#include

#include

"m4_const.h"

"cac.h"

"areasorc.h"

#include "areadrc.h"

#include "cdheader.h"

#include "dr header.h"

#include "sg_header.h"

#include "pa.h"

C-

C -
r-
4-

4-

r,-

It for most applications.

included in source code.

Standard C I/O library

Enables software portability to the
VAX/VMS platform

Enables software portability to the
VAX/VMS platform

Enables software portability to the
VAX/VMS platform

TS-specific definitions
CAC-specific definitions

Structure for data in the
[ID]AREASORC.DAT file

Structure for data in the
[ID]AREADRC.DAT file

Structure for data in the
(MAPx.CDxxxxx]HEADER.DAT file

Structure for data in the
[MAPx.CDxxxxx.TPCxxxxx]HEADER.DAT file

Structure for data in the
[MAPx.CDxxxxx.TPCxxxxx]SGHED.DATfile

Palette area and data from
CDCOVRG.DAT file

3 READ AREADRC
Reads the contents of the specified AREADRC.DAT file. The
contents are read into the structure pointed to by "areadrc".

4 Invocation
Readareadrc is invoked using the following syntax:

short readareadrc (char path[], structr areadrc *areadrc,
short *numpas)

where
path: Complete file specification of the AREADRC.DAT file.

(char [], passed)

F-37

areadrc: Structure to contain data read from AREADRC.DAT file.
(struct areadrc *, returned)

numpas: Number of PA areas (zones) in the AREADRC.DAT file.
(short *, returned) 5

4 Returns
Readareadrc returns a file access status containing one of the
following values: I

Value Meaning
1 Normal termination

-1 Error opening AREADRC.DAT file. I
-2 Error reading AREADRC.DAT file.

(returned, short)

3 READAREASORC
Reads the contents of the specified AREASORC.DAT file. The
contents are read into the structure pointed to by "areasorc".

4 Invocation
Readareasorc is invoked using the following syntax:

short readareasorc (char path[], structr areasorc *areasorc,
short *numpas)

where
path: Complete file specification of the AREASORC.DAT file.

(char [], passed)

areasorc: Structure to contain data read from AREASORC.DAT file. |
(struct areasorc *, returned)

numpas: Number of PA areas (zones) in the AREASORC.DAT file.
(short *, returned)

4 Returns
Readareasorc returns a file access status containing one of the
following values:

Value Meaning
1 Normal termination

-1 Error opening AREASORC.DAT file. I
-2 Error reading AREASORC.DAT file.
(returned, short) g

3 READCDHEADER
Reads the contents of the specified CDHEADER.DAT file. The
contents are read into the structure pointed to by "cdheader". |

4 Invocation
Readcdheader is invoked using the following syntax: |

short readcdheader (char path[], structr cdheader *cdheader,
short *numpas)

where

F-38

path: Complete file specification of the CDHEADER.DAT file.
(char [], passed)

cdheader: Structure to contain data read from CDHEADER.DAT file.
(struct cdheader *, returned)

4 Returns
Read cdheader returns a file access status containing one of the
following values:

Value Meaning
1 Normal

-1 Error opening CDHEADER.DAT file.
-2 Error reading CDHEADER.DAT file.
(returned, short)

3 READ DRHEADER
Reads the contents of the specified DRHEADER.DAT file. The
contents are read into the structure pointed to by "drheader".

4 Invocation
Read drheader is invoked using the following syntax:

short readdrheader (char path[], structr drheader *drheader,
short *numpas)

where
path: Complete file specification of the DRHEADER.DAT file.

(char [], passed)

drheader: Structure to contain data read from DRHEADER.DAT file.
(struct drheader *, returned)

4 Returns
Readdrheader returns a file access status containing one of the
following values:

Value Meaning
1 Normal termination
-1 Error opening DRHEADER.DAT file.
-2 Error reading DRHEADER.DAT file.
(returned, short)

3 READ SGHEADER
Reads the contents of the specified SGHEADER.DAT file. The
contents are read into the structure pointed to by "sgheader".

4 Invocation
Read_sgheader is invoked using the following syntax:

short readsgheader (char path[], structr sgheader *sgheader,
short *numpas)

where
path: Complete file specification of the SGHEADER.DAT file.

(char [], passed)

F-39

sgheader: Structure to contain data read from SGHEADER.DAT file.
(struct sgheader *, returned)

4 Returns
Readsgheader returns a file access status containing one of the
following values:

Value Meaning
1 Normal termination

-1 Error opening SGHEADER.DAT file. I
-2 Error reading SGHEADER.DAT file.
(returned, short) I

3 FILEOPENERROR
Prints a file open error message and returns an error status 5
(whose value is -1). Fileopenerror is invoked using the
following syntax:

static short fileopenerror (char path[])
where a

char message[80] The error message

3 FILE READ-ERROR j
Prints a file read error message and returns an error status
(whose value is -2). Filereaderror is invoked using the
following syntax:

static short filereaderror(char path[])
where

char message[80) The error message

2 CACUTIL.C
A suite of high-level C language utilities for reading CAC
CD-ROMs. See Overview for brief descriptions of each routine.

See subtopics MAINLL.C and MAINRC.C for implementation examples
of CAC reader software.

3 Overview
The suite of C language utilities, with brief descriptions, I
include:

DECODEKEY: Converts "key" name to row/column values. |

DECOMPRESSSEGMENT: Reads and decompress the specified
segment. |

DOUBLE TO SI: Converts a double precision number to
a scaled integer number.

ENCODEKEY: Converts row/column values to "key" name.

EQ2POL: Rotates equatorial latitude and longitude |

F-40 1

to the polar zone.

GETDECOMPRESSEDPIXEL: Retrieves specified pixel from a
compressed segment.

GET SEGMENTNAME: Builds the CAC compressed segment path
name.

INITMEM: Initializes memory required to buffer
compressed segment data.

LATLON CALC: Convert row and column values to latitude
and longitude.

LOADLEGENDDATA: Reads header, palette, and image files for
specified legend data.

ODD: Determines if a number is even or odd.

POL2EQ: Rotates polar latitude and longitude to
the equatorial zone.

RCCALC: Converts latitude and longitude to row and
column values.

READ CD COVRG: Reads the contents of the specified
CDCOVRG.DAT file.

READCDID: Reads the CDID.DAT file from the CD-ROM.

READCOMPRESSEDSEGMENT: Reads the compressed segment and its
codebook.

READ PA COVERAGE: Reads the PA coverage file (COVERAGE.DAT).

READPALETTE: Read the specified color palette.

SICONVERT: Converts an ASCII string to a scaled integer
number.

SITODOUBLE: Converts scaled integer numbers to double
precision numbers.

SPDEC: Decompresses CAC data.

3 DECODEKEY
Decodes the key name for downsampled and compressed segments into
its row and column components.

4 Invocation
DECODEKEY is invoked using the following syntax:

F-41

void decodekey (key, row, col) 5
Where

key: Downsampled segment key name
(passed unsigned long)

row: Downsampled segment row number
(returned long) 3

col: Downsampled segment column number
(returned long) 3

4 Returns
DECODEKEY returns the downsampled segments row and column numbers
through the following arguments:

row: Downsampled segment row number
(returned long) 5

col: Downsampled segment column number
(returned long)

3 DECOMPRESSSEGMENT
Reads a compressed segment and its codebook and then decompresses
the segment. A pointer to the beginning of the decompressed
segment is returned.

4 Invocation 1
DECOMPRESSSEGMENT is invoked using the following syntax:

short decompress_segment (char pa_path[], unsigned char I
*decompseg)

Where
File access status is returned through a short variable.

pa_path: Complete file specification of CAC segment
file to decompress. I
(passed char [])

decompseg: Pointer to the beginning of the array containing |
the decompressed segment data.
(returned unsigned char)

4 Returns X
DECOMPRESSSEGMENT returns

File access status containing one of the following values: |
Value Meaning

1 Normal
-1 Error opening compressed CAC segment file. 5

F-42

-2 Error reading compressed CAC segment codebook.
-3 Error reading compressed CAC segment data.

(returned short)

decomp_seg: Pointer to the beginning of the array containing
the decompressed segment data.
(returned unsigned char)

3 DOUBLETOSI
Converts a double precision number to a 32-bit scaled integer
number. Hence, this routine reduces the precision of the data.

4 Invocation
DOUBLE TO SI is invoked using the following syntax:

double doubletosi (double value)

Where:
The scaled integer is returned through a 32-bit
(double) variable.

value: The double precision value to be converted.
(passed double)

3 ENCODE-KEY
Encodes the key name for downsampled and compressed segment files.

4 Invocation
ENCODEKEY is invoked using the following syntax:

unsigned long encodekey (row, col)

Where
The key name is returned through an unsigned long
variable.

row: Segment row number
(passed long)

col: Segment column number
(passed long)

3 EQ2POL
Rotates equatorial latitude and longitude coordinates into
polar zone coordinates.

4 Invocation
EQ2POL is invoked using the following syntax:

void eq2pol (double *dlatin, double *dlngin,

F-43

double *dlatout, double *dlngout,
short *zone)

Where
dlatin: Segments equatorial latitude coordinate.

(passed double) I
dlngin: Segment's equatorial longitude coordinate.

(passed double) i
dlatout: Segment's rotated polar latitude coordinate.

(returned double) i
dlngout: Segment's rotated polar longitude coordinate.

(returned double)

zone: The polar zone number. I
(passed short)

4 Returns 3
EQ2POL returns the rotated coordinate values through the following
arguments:

dlatout: Segment's rotated polar latitude coordinate.
(returned double)

dlngout: Segment's rotated polar longitude coordinate.
(returned double)

3 GET DECOMPRESSEDPIXEL
Retrieves specified pixel from a compressed segment.

4 Invocation I
GETDECOMPRESSEDPIXEL is invoked using the following syntax:

short getdecompressedpixel(short y, short x) I
Where

The pixel value is returned through a short variable. 3
y: Y Coordinate in the decompressed segment

(passed short)

x: X coordinate in the decompressed segment I
(passed short)

4 Returns |
GETDECOMPRESSEDPIXEL returns the specified pixel from
the decompressed segment as a short variable. 5

3 GET SEGMENTNAME
Builds the CAC compressed segment path name from the palette area

F-44

I

directory name, row number, column number, and zone of the
requested segment.

4 Invocation
GET SEGMENT NAME is invoked using the following syntax: -,,

void get_segmentname (char pa_path[), long row, long col,
short zone, char segpath[])

Where
pa_path: Path to the palette area subdirectory. Note the

"period" at the end of the VMS path name.
(i.e., for VMS: CDROM:[MAP3.PA012901.)
(i.e., for UNIX: /cdrom/map3/paO12901/)
(i.e., for MSDOS: D:\map3\paO12901\)
(passed char [))

row: Row number of segment to decompress.
(passed long)

col: Column number of segment to decompress.
(passed long)

zone: Tesselated Sphere zone number corresponding to
"papath".
(passed short)

seg_path: Complete path specification for requested segment.
(i.e., for VMS:

CDROM:[MAP3.PA012901.R000015]12345678.214)
(i.e., for UNIX:

/CDROM/MAP3/PA012901/R000015/12345678.214)
(i.e., for MSDOS: D:\MAP3\PA012901\R000015\12345678.214)

(returned char [])

4 Returns
GETSEGMENT NAME returns the complete path specification,
"seg_path", for the requested segment.

segpath: Complete path specification for requested segment.
(ie. for VMS:

CDROM:[MAP3.PA012901.R000015]12345678.214)
(ie. for UNIX:

/CDROM/MAP3/PA012901/R000015/12345678.214)
(ie. for MSDOS:

D:\MAP3\PA012901\R000015\12345678.214)

(returned char [])

3 INIT MEM

F-45

Initializes the memory required to buffer compressed segment data.
This routine should only be executed once. I
The number of CAC compressed segments that may be buffered at one
time is controlled by #define MAXSEGSINBUF (which is defined in
the file CAC.H). The structure element "mem init", within the
structure "cac" (also defined in CAC.H), is set when this routine
terminates. 3

4 Invocation
INITMEM is invoked using the following syntax:

init memo

Note that there are no arguments or return values.

3 LATLONCALC I
Calculates latitude and longitude coordinates from row and column
values. The zone is required for handling overlap areas.

4 Invocation
LATLONCALC is invoked using the following syntax:

void latloncalc (short *zone, short *scale, long *row,
long *col, double *rlatp, double *rlonp) I

Where
zone : TS zone number to be used in the conversion. I

(passed short integer)

scale: Map scale. 3
(passed short integer)

row: TS segment row number to convert.
(passed long)

col: TS segment column number to convert.
(passed long) l

rlatp: Latitude coordinate based on zone, scale row, col
(returned double) I

rlonp: Longitude coordinate based on zone, scale row, col
(returned double) 3

4 Returns
LATLON_ CALC returns the segment's latitude and longitude
coordinates through the following arguments:

rlatp: Segment's latitude coordinate
(returned double)

F-46

I

rlonp: Segment's longitude coordinate
(returned double) 4-

3 LOADLEGENDDATA
Reads header, palette, and image files for the specified legend
data. A pointer to the beginning of the legend image is returned
along with the RGB buffers and the size (in rows/columns) of the
legend image itself.

4 Invocation
LOADLEGENDDATA is invoked using the following syntax:

short loadlegend_data (char legend_path[], byte *legend_buf,
byte rbuf[], byte gbuf[], byte bbuf[],
unsigned long *legend_x, unsigned long
*legend_y)

Where
File access status is returned through a short variable.

legend_path: File specification of the directory containing
the legend data.
(passed char [])

legend_ptr: Pointer to the beginning of the array
containing the legend image data.
(returned byte)

rbuf: Red component of the legend image's palette.
(returned byte [))

gbuf: Blue component of the legend image's palette.
(returned byte [])

bbuf: Green component of the legend image's palette.
(returned byte [])

legendx: Size of the legend image in the "x" direction
(columns).
(returned unsigned long)

legend_y: Size of the legend image in the "y" direction
(rows).
(returned unsigned long)

4 Returns
LOADLEGENDDATA returns the following information:

File access status containing one of the following values:
Value Meaning

1 Normal
-1 Error opening legend header file.

F-47

-2 Error reading legend header file.
-3 Error opening legend image file.
-4 Error reading legend image file.

(returned short)

legendptr: Pointer to the beginning of the array 1
containing the legend image data.
(returned byte)

rbuf: Red component of the legend image's palette.
(returned byte []) I

gbuf: Blue component of the legend image's palette.
(returned byte [])

bbuf: Green component of the legend image's palette. I
(returned byte [])

legendx: Size of the legend image in the "x" direction I
(columns).
(returned unsigned long)

legend_y: Size of the legend image in the "y" direction
(rows).
(returned unsigned long) |

3 ODD
Determines whether or not the specified value is odd or even.

4 Invocation
Odd is invoked using the following syntax: 5

short odd (short numn)

WhereX
A short variable is used to return the status of "num" I
num: number to test

(passed short) I
4 Returns
ODD returns a short variable that contains one of the following |
values:

0 if the number tested is odd
1 if the number tested is even

3 POL2EQ
Rotates polar latitude and longitude coordinates to equatorial I
zone coordinates.

4 Invocation |

F-48
I

POL2EQ is invoked using the following syntax:

void pol2eq (double *dlatin, double *dlngin, double *dlatout,
double *dlngout)

7-0

Where
dlatin: Segments polar latitude coordinate.

(passed double)

dlngin: Segment's polar longitude coordinate.
(passed double)

dlatout: Segment's rotated equatorial latitude coordinate.
(returned double)

dlngout: Segment's rotated equatorial longitude coordinate.
(returned double)

4 Returns
POL2EQ returns the rotated coordinate values through the following
arguments:

dlatout: Segment's rotated equatorial latitude coordinate.
(returned double)

dlngout: Segment's rotated equatorial longitude coordinate.
(returned double)

3 RCCALC
Converts latitude and longitude to row and column values.

4 Invocation
void rccalc (double *rlat, double *rlon, short *scale,

short *zone, long *row, long *col)
Where

rlat: TS segment latitude coordinate
(passed double)

rlon: TS segment longitude coordinate
(passed double)

scale: Map scale
(passed short)

zone: TS zone number that the segment lies within.
(passed short)

row: TS segment row number
(returned long)

col: TS segment column number

F-49

(returned long)

4 Returns
RC CALC returns the segments row and column numbers through the
following arguments: 1
row: TS segment row number based on passed latitude, longitude,

scale and zone
(returned long)

col: TS segment column number based on passed latitude, longitude,
scale and zone I
(returned long)

3 READ-CD COVRG U
Reads the contents of the specified CDCOVRG.DAT file, which
contains the approximate coverages for each PA area on the CAC and
the PA area's associated zone number.

Originally, zone numbers were not part of the CDCOVRG.DAT file
and were added at a later date (beginning with CAC
CD-1991-A-MAP3-1005). Hence, earlier versions of the CDCOVRG.DAT
file do not contain zone numbers. The structure "no zonecacs",
containing the PA area/zone number association for those CAC's, is
used for accessing these "older" files. The CD ID.DAT file MUST I
be read first in order to correctly process the CDCOVRG.DAT file
(see CACINIT for information about file access). 3

4 Invocation
READCDCOVRG is invoked using the following syntax:

short readcdcovrg (char path[], I
char pa nums[MAXPAS][8],
short *num_pas,
double pa_latlon[MAX_PAS][4],
char pazones[MAXPAS])

Where
File access status is returned through a short variable. I
path: Complete path specification to the CD-ROM's

CDCOVRG.DAT file.
(passed char [])

pa_nums: Two-dimensional array of palette area names from the
CD COVRG.DAT file. Each palette area name is 8 I
bytes. The maximum number of possible palette areas
on one CD-ROM is MAXPAS (see CAC.H).
(returned char[][]) I

num_pas: The number of palette areas on the CD-ROM.
(returned short)

F-50

pa latlon: Two-dimensional array of approximate coverages of each
palette area on the CD-ROM. The order of the lat/lon
data in the array is:

[*][0] - West longitude
[*][l] - East longitude
[*][2] - South latitude
[*][3] - North latitude

(returned double[)[])

pa_zones: Array of TS zone numbers corresponding to the
"pa nums" above.
(returned char[][])

4 Returns
READCDCOVRG returns the following information:

File access status containing one of the following values:
Value Meaning

1 Normal
-1 Error opening CD COVRG.DAT file.
-2 Error reading the number of palette areas from

CDCOVRG.DAT file.
-3 Error reading a palette area name from CDCOVRG.DAT file.
-4 Error reading a palette area lat/lon set from

CDCOVRG.DAT file.
(returned short)

pa_nums: Two-dimensional array of palette area names from the
CD COVRG.DAT file. Each palette area name is 8
bytes. The maximum number of possible palette areas
on one CD-ROM is MAXPAS (see CAC.H).
(returned char[)[])

numpas: The number of palette areas on the CD-ROM.
(returned short)

pa_latlon: Two-dimensional array of approximate coverages of each
palette area on the CD-ROM. The order of the
latitude/longitude data in the array is:

[*][0] - West longitude
[*][l] - East longitude
[*][2] - South latitude
[*][3) - North latitude

(returned double[][])

pa_zones: Array of TS zone numbers corresponding to the
"pa nums" above.
(returned char[][])

3 READ CD ID
Reads the CDID.DAT file from the (ID] directory on the CD-ROM.

F-51

4 Invocation
READCDID is invoked using the following syntax.

short read-cd-id (char path[], char data[])

Where
Completion status is returned through a short variable.

path: Complete path specification to the CD-ROM's CD ID.DAT I
file.
(passed char []) I

data: Contents of specified CDID.DAT file.
(returned char [], requires twenty bytes)

4 Returns I
READCDID returns the following information:

File access status containing one of the following values: I
Value Meaning

1 Normal
-1 Error opening CDIID.DAT file.
-2 Error reading CDID.DAT file.

(returned short)

data: Contents of specified CD ID.DAT file. I
(returned char [], requires twenty bytes)

3 READ-COMPRESSED SEGMENT I
Reads the compressed segment and its codebook. The codebook and
segment are buffered into the array "segbuf". This is an array of
structures of type "ASegment". The number of segments that can be
buffered is controlled by the definition of MAX SEGSINBUF (in
CAC.H). This buffering reduces the overhead of having to re-read
an often used segment.

4 Invocation
READ COMPRESSED SEGMENT is invoked using the following syntax: 5
short readcompressedsegment (char pa_path[],

byte *codebook,
byte *compseg)

where
File access status is returned through a short variable. |

pa_path: Complete file specification of CAC segment
file of interest.
(passed char [3])

codebook: Contains compression codebook data.
(returned byte)

F-52

C-.H

compseg: Contains compressed segment data.
(returned byte) .

4 Returns: -

READ COMPRESSED SEGMENT returns the following information:

File access status containing one of the following values:

Value Meaning
1 Normal
-1 Error opening compressed CAC segment file.
-2 Error reading compressed CAC segment codebook.
-3 Error reading compressed CAC segment data.

(returned short)

codebook: Contains compression codebook data.
(returned byte)

compseg: Contains compressed segment data.
(returned byte)

3 READPACOVERAGE
Reads the scaled integer lat/long coordinate from a COVERAGE.DAT
file and returns them as doubles. Note that the scaled integers
are stored with their bytes swapped and must be re-swapped before
conversion to real numbers.

4 Invocation
READ PA COVERAGE is invoked using the following syntax:

short readpa_coverage (pa_coverage_file, left_lon, right_lon,
botlat, toplat)

Where
PACOVERAGEFILE: Path name specification of COVERAGE.DAT file.

DEVICE:[ODIXXXXX.MAPX.PAXXXXYY]COVERAGE.DAT
(passed char)

leftlon: Left longitude coordinate
(returned double)

right_lon: Right longitude coordinate
(returned double)

botlat: Bottom latitude coordinate
(returned double)

top_lat: Top latitude coordinate
(returned double)

4 Returns
READPACOVERAGE returns the following information.

F-53

File access status is returned through a short variable
containing one of the following values:

Value Meaning
1 Normal

-1 Error opening PA COVERAGE.DAT file. I
-2 Error reading PA COVERAGE.DAT file.

(returned short) 3
right_lon: Right longitude coordinate

(returned double)

botlat: Bottom latitude coordinate
(returned double)

top_lat: Top latitude coordinate I
(returned double)

3 READ PALETTE
Reads the specified CAC day, night, or mono color palette.

4 Invocation
READPALETTE is invoked using the following syntax:

short read_palette (char type, char path[], byte red[],
byte green[], byte blue[]) I

Where
file access status is returned through a short variable I
type: Day or night palette differentiation

(passed char) 3
path: Complete file specification of the CAC

color palette file
(passed char)

red: Red component of color palette
(returned byte) I

green: Green component of color palette
(returned byte)

blue: Blue component of color palette
(returned byte) 3

4 Returns
READ-PALETTE returns the following information: 3

File access status containing one of the following values.
Value Meaning

1 Normal

F-54

C-

-1 Error opening CAC color palette
-2 Error reading CAC color palette
(returned short)

red: Red component of color palette
(returned byte)

green: Green component of color palette
(returned byte)

blue: Blue component of color palette
(returned byte)

3 SICONVERT
Converts an ASCII string in the form sDDDMMSS.SS to a scaled
integer. Where

"s" is the sign of the latitude or longitude
(i.e., "+" or "-"). The "s" must always be present.

DDD is degrees
MM is minutes

SS.SS is seconds

4 Invocation
SICONVERT is invoked using the following syntax:

long siconvert (*value,type)

Where:
The scaled integer of the "value" is returned through a
long variable.

value: ASCII value of coordinates
(passed char)

type: Latitude or longitude type of conversion
(passed short)

3 SITODOUBLE
Converts a scaled integer to a real number (double). Returns
the value as a double.

4 Invocation

SITODOUBLE is invoked using the following syntax:

double si todouble (si)

Where:
The real number of "si" is returned through a double
variable.

F-55

si: Scaled integer
(passed long) 3

3 SPDEC
Decompresses a CAC compressed segment.

4 Invocation

Due to the memory constraints of MS-DOS, this routine has two 3
syntaxes: One for MS-DOS and one for VMS and UNIX.

The VMS and UNIX syntax follows:

void spdec (unsigned char inptr[16384],
unsigned char spcbptr[16384],
unsigned char outptr[16384])

Where
inptr: Compressed segment to be decompressed. The I

compressed segment is assumed to be 16382 bytes.
(passed byte)

spcbptr: Codebook to be used to decompress the segment. The
codebook is assumed to be 1024 bytes.
(passed byte) 3

outptr: Decompressed segment. The decompressed segment
requires 65536 bytes.
(returned byte)

2 CCOMMA.C
Places commas in an integer number. This function should only be
invoked by routines written in C code. For the equivalent FORTRAN
language function, see subtopic FCCOMMA.C

CCOMMA.C is invoked using the following syntax:

long ccomma (number) 3
where

The function returns the address of a character string
that contains the number (passed) with commas.

number Contains an integer number
(passed)

3 Example
The following pseudocode provides an example of usage.

long number=100100999 /* integer to be passed */

F-56

fprint ("%s /n") ccomma(number) /* invocation */

/* The string "100,100,999" is printed */

2 CHECK LON ORIENTATION.C

A C language routine that determines whether a minimum longitudeI value and maximum longitude value are the true minimum and maximum
values for a given data set.

3 Input Output
In add7tion to minimum and maximum longitude values,
CHECKLONORIENTATION must be passed one of the following integer

* ~~values:
* 0 - When the data set crosses 0 degrees longitude.

180 - When the data set crosses 180 degrees longitude.

CHECK LON ORIENTATION returns the following values:

1 (for TRUE) if the minimum longitude is LESS than the maximum
longitude.

0 (or FALSE) if the minimum longitude is GREATER than the
maximum longitude (when passed 0),

OR
if the minimum longitude is indeed GREATER than or
EQUAL to the maximum longitude (when passed 180).

3 InvocationU CHECKLONORIENTATION is invoked using the following syntax:

long CHECKLONORIENTATION (long *status, float *minlon,3 float *maxlon);

Where
The orientation status is returned through a long (integer)

U variable.

status: Whether the data set crosses 0 or 180
(passed long)I minlon: Minimum longitude
(passed long)

maxlon: Maximum longitude
(passed long)

Pseudocode examples of invocation from FORTRAN and C programs are
provided.

4 FORTRAN-Example3 FORTRAN pseudocode example:

F-57

integer*4 status = 180 ! Data set crosses 180 degrees
real*4 minlon = -50.0 ! Minimum longitude
real*4 maxlon = 60.0 ! Maximum longitude

if ((checklonorientation(status, minlon, maxlon)) .ne. 1) then
temp = minlon
minlon = maxlon ! minimum and maximum longitude values
maxlon = temp ! are not in the correct orientation

endif ! so they are swapped.

4 CExample

C pseudocode example:

long checklon-orientation (long *status, float *minlon,
float *maxlon); I

status = 0; /* long, data set crosses 0 degrees */
minlon = 50.0; /* float, minimum longitude I
maxlon = -60.0; /* float, maximum longitude

if (!(checklonorientation(&status, &minlon, &maxlon)) 3
{

temp = minlon;
minlon = maxlon; /* minimum and maximum longitude values*/
maxlon = temp; /* are not in the correct orientation */ I

} /* so they are swapped.

2 CLEANUP.C

Subroutine CLEANUP.C traverses the current processing thread
directory structure and performs functions necessary for trimming
the chart ODI.

3 Functionality I
CLEANUP.C performs the following functions that are necessary
for trimming the chart ODI.

* Creates a log file in the MDFFSCRATCH directory, named
CLEANUP.LOG, which contains the following information:

- Error messages generated during execution
- Information about ID directories I
- Zone coverages
- MAP directory summary. 3

* Purges the ID and MAP directories.

* Renames all files to have a file version of one (;1). I
* Inserts copies of the ID files into CLEANUP.LOG.

F-58

* Checks for extra directories and reports the total number of
directories.

* Deletes all DRCOVRG.DAT files.

* Attempts to perform open, read, scan, and seek operations on
HEADER.DAT files. Reports the total number of HEADER.DAT filesU and error messages.

* Counts PA directories and insures that there is only one PA
directory per zone.

* * Verifies and reports the number of ROW directories.

* Counts CD directories and insures that the number of CDU directories matches the number of CD-ROMS processed listed in
the CHART STATUS file.

3 * Verifies and reports the number of LEGEND files.

* Verifies and reports the number SOURCE GRAPHICS files.

U * Verifies and reports the number of PALETTE.DAT files and insures
that each PA directory has a PALETTE.DAT file.

U * Verifies and reports the number of COVERAGE.DAT files and
insures that each PA directory has a COVERAGE.DAT file.

3 * Verifies and reports the number of SEGMENT files.

* For each zone, verifies that all segments fall within definedU boundaries. Reports boundaries and any errors encountered.

* Checks for extraneous files.

1 3 Invocation

Use the following syntax to invoke CLEAN UP.C:

errors = CLEANUP 0;

3 where errors is an INTEGER*4 (LONG) variable containing the
number of errors found during execution. Detected errors may be
corrected and CLEAN UP re-invoked.

3 ** CLEANUP should be invoked until an error count of zero is
returned.

2 COORDINATES.FOR3 Contains routines that convert latitude/longitude coordinates into

F-59

their degrees, minutes, and seconds equivalents. Each routine is
described as a subtopic.

3 DISPLAYCOORD
Double precision floating point latitude/longitude coordinate
pairs are converted to their degrees, minutes and seconds
equivalents and displayed on the user's terminal.

The following syntax is used to invoke DISPLAYCOORD:

call DISPLAY_COORD(SOUTHLAT, WESTLONG, NORTHLAT, EASTLONG)

where

SOUTHLAT

NORTHLAT

WESTLONG

EASTLONG

Southern latitude coordinate
(passed, real*8)
Northern latitude coordinate
(passed, real*8)
Western longitude coordinate
(passed, real*8)
Eastern longitude coordinate
(passed, real*8)

4 Example
The following FORTRAN-based pseudocode provides
usage:

an example of

C *** Using these coordinate values as input
SOUTHLAT = -25.25
WESTLONG = -125.75

NORTHLAT = 30.00
EASTLONG = -90.00

CALL DISPLAY COORD(SOUTHLAT, WESTLONG, NORTHLAT, EASTLONG)

C *** The following equivalent values are displayed:

southlat: -25.25 degrees = -25 deg 15 min 00.00 sec
westlong: -125.75 degrees = -125 deg 45 min 00.00 sec

northlat:
eastlong:

30.00 degrees = 30 deg 00 min 00.00 sec
-90.00 degrees = -90 deg 00 min 00.00 sec

3 ENTERCOORD
Issues prompts for a pair of latitude/longitude coordinates.
Because they are stored as a character string, the coordinates may
be entered as either integer, decimal, or degrees, minutes and
seconds values (i.e., 90, 90.25, or 90 15 00). When the
coordinates are entered as integer or degrees, minutes, and

F-60

U

I

I

I
I.
I

I
I
I-

I
I

I
I

I
I

I

I
I
I

C'

seconds, the character string is converted to a double precision 7-

floating point value by the function DECIMAL (see subtopic
DECIMAL.FOR for additional information). When the coordinates are
entered as decimal values, the character string is converted to
its double precision floating point value by an internal READ
statement.

The following syntax is used to invoke ENTERCOORD:

call ENTERCOORD(NEW LAT, NEWLON)

where
NEWLAT Contains the converted latitude coordinate

(returned, real*8)
NEWLON Contains the converted longitude coordinate

(returned, real*8)

2 CREATEPADIR.C

---------- TO BE ADDED LATER ------------

2 DECIMAL.FOR
This function is designed to accept a character string from the
routine ENTERCOORD.FOR and convert it to its double precision
equivalent. The character string must contain a coordinate value
in either decimal or degrees, minutes and seconds formats. Both
formats are converted to a double precision floating point value.

The following syntax is used to invoke DECIMAL:

REAL*8 FUNCTION DECIMAL (ATMP)
where

REAL*8 Returns the converted decimal value

ATMP Contains the coordinated to be converted
(passed, character*80)

3 Examples
The following FORTRAN-based pseudocode provides examples of usage:

C *** Using the following input string

ATMP = '90 15 00'
LAT = DECIMAL (ATMP)

C *** The returned value of LAT is 90.2500

C *** Using the following input string
ATMP = '90'

F-61

LAT = DECIMAL(ATMP)

C*** The returned value of LAT is 90.0000

2 DTR PROCS.FOR
Contains a suite of FORTRAN language routines for converting to
and from Datatrieve data storage format. Routines exist for
converting to/from Datatrieve CHARACTER format to REAL*4 format.
Subtopics provide descriptions of routines within the suite.

3 CLOSE ADRG DTR FILE
Closes an open (Datatrieve ADRG) file that has been designated as
unit 10. CLOSE_ADRGDTRFILE is invoked using the following
syntax:

call CLOSEADRGDTRFILE

3 DECODEDTRLATLON
Converts two longitude and two latitude values, from the
Datatrieve "integer" format (which is actually in a character
format), into REAL*4 format. DECODEDTRLATLON is invoked using
the following syntax:

call DECODE DTR LATLON (encoded,tlat,blat,llon,rlon)

where
STRUCTURE encoded

(Passes
CHARACTER*12
CHARACTER*2
CHARACTER*4
CHARACTER*4
CHARACTER*5
CHARACTER*5
CHARACTER*29
CHARACTER*6
CHARACTER*7
CHARACTER*2
CHARACTER*1
CHARACTER*1
CHARACTER*1

REAL*4

REAL*4

REAL*4

REAL*4

blat
tlat

llon

rlon

the fol]
serial
edition
llat
ulat
llon
rlon
geoloc
cdnum
date
box
cac
dist
sheet

lowing fields)
Chart serial number
Chart edition number
Chart minimum latitude
Chart maximum latitude
Chart minimum longitude
Chart maximum longitude
Chart geographic location
ADRG CD serial number
Date entered into database
Backup box storing the ADRG CD
CAC inclusion flag
Distribution statement flag
Flag for paper chart that is
stored in the MDFF lab

Minimum latitude of chart
(returned)
Maximum latitude of chart
(returned)
Minimum longitude of chart
(returned)
Maximum longitude of chart

F-62

I
I
I

I

I

I

I
I
I
I
I

I

I

I
I

I

U

I

(returned)

3 ENCODEDTRLATLON
Converts two longitude and two latitude values from REAL*4 format,
into the Datatrieve "integer" format (which is actually in
character format). ENCODEDTRLATLON is invoked using the
following syntax:

call ENCODE DTR LATLON (tlat,blat,llon,rlon,encoded)

where
REAL*4 blat Minimum latitude of chart

(passed)
REAL*4 tlat Maximum latitude of chart

(passed)
REAL*4 llon Minimum longitude of chart

(passed)
REAL*4 rlon Maximum longitude of chart

(passed)
STRUCTURE encoded

(returns the following fields)
CHARACTER*12 serial Chart serial number
CHARACTER*2 edition Chart edition number
CHARACTER*4 llat Chart minimum latitude
CHARACTER*4 ulat Chart maximum latitude
CHARACTER*5 llon Chart minimum longitude
CHARACTER*5 rlon Chart maximum longitude
CHARACTER*29 geoloc Chart geographic location
CHARACTER*6 cdnum ADRG cd serial number
CHARACTER*7 date Date entered into database
CHARACTER*2 box Backup box storing the ADRG CD
CHARACTER*1 cac CAC inclusion flag
CHARACTER*1 dist Distribution statement flag
CHARACTER*1 sheet Flag for paper chart that is

stored in the MDFF lab

3 MODIFY DTR CHARTSCACED
Reads charts in current CHART STATUS file and changes the CAC
coverage field in the appropriate ADRG database file from a blank
to a 'C', which indicates which chart has been incorporated into
a CAC. MODIFYDTRCHARTSCACED is invoked using the following
syntax:

Call MODIFYDTRCHARTSCACED()

3 OPENADRGDTRFILE
Performs a formatted open (as unit 10) on a Datatrieve ADRG file.
The ADRG file opened is based on the map scale. OPENADRGDTRFILE
is invoked using the following syntax:

F-63

I
call OPEN ADRG DTRFILE (map-scale)

where
INTEGER*2 map_scale ADRG map scale, ranges from 0 to 7

(passed)

3 READADRGDTRRECORD
Returns a status indicating the existence of a record. If the
record exists, all fields, contained within the ADRG database are
returned. READADRGDTRRECORD is invoked using the following
syntax:

status = READADRGDTR RECORD(decoded)

status
(returned)

"TURE decoded
(returns

CHARACTER*12
CHARACTER*2

REAL*4
REAL*4
REAL*4
REAL*4

CHARACTER*29
CHARACTER*6
CHARACTER*7
CHARACTER*2
CHARACTER*1
CHARACTER*1
CHARACTER*1

I
the following fields)
serial Chart serial number
edition Chart edition number
llat Chart minimum latitude
ulat Chart maximum latitude
llon Chart minimum longitude
rlon Chart max longitude
geoloc Chart geographic location
cdnum ADRG CD serial number
date Date entered into database
box Backup box storing the ADRG CD
cac CAC inclusion flag
dist Distribution statement flag
sheet Flag for paper chart that is

stored in the MDFF lab

I

I
I
I

I
2 FCOMMA.C
Places commas in an integer number. This function should only be
invoked by routines written in FORTRAN code. For the equivalent
C language function, see subtopic CCOMMA.C.

FCOMMA.C is invoked using the following syntax:

character*(*) function FCOMMA (number)

where
A character string, containing the number with newly
inserted commas, is returned.

number

I

I
I
I

Contains an integer number
(passed)

I
F-64

I
I

I
I

where
LOGICAL

STRUC

I
I

I

3 Example .
The following pseudocode provides an example of usage.

4-

integer*4 number/100100999/ ! integer to be passed

write (6, '(lx,a)') FCOMMA (number) ! invocation C

! The string "100,100,999" is printed.

2 FILE ATTRPROCS.C
Contains a suite of C language routines that provide information
about VMS files and directories. Subtopics include requirements
and individual routines within the suite.

3 Includefiles
The file, "V2_DIR:FFILE ATTR.H", contains data definitions that
are used by suite routines and must be included in the source

code.

The following external routine is required for linkage:

F_FILEATTR.MAR Implementation of the DCL lexical function
F$FILE ATTRIBUTE as a "callable" subroutine

3 Suite Description
FILE_ATTRPROCS.C contains the following routines:

4 FILE SIZEINIT
Initializes the variables that are used by filesize send and
file sizeret. The following syntax is used to invoke
filesizeminit:

void filesizeinit ()

4 FILESIZESEND
Determines whether the file, which is passed as an argument, is a
directory or a file. Calls a macro subroutine that reads the file
until end-of-file is encountered and determines the number of
actual blocks that the file, or directory uses. The following
syntax is used to invoke filesizesend:

long file size_send (struct dsc$descriptors *fname)

where
long Return status that will possess one of the following

values: TRUE if no errors are encountered
FALSE if errors are encountered

fname Name of directory or file. Passed as
struct dsc$descriptor_s

F-65

4 FILESIZE RET
Returns the total number of blocks that are used by files and I
directories which have been passed as arguments to the
filesizesend routine. The following syntax is used to invoke
file size ret: I
void filesizeret (long *f_blocksused, long *dblocksused)

where |
f_blocksused The total number of blocks used by the files.

(passed long)

d-blocks used The total number of blocks used by the
directories.
(passed long) 3

3 Example
The following C language pseudocode provides an example of usage. 3
call FILESIZEINIT () ! This sets up the variables used by the

! next two calls. This routine MUST be
called first. 3

! Loop through the number of files you wish to obtain total sizes
on. I

LOOP 1 TO NumberOfFiles

! Send in as many files as you like, may only be one. |
! Filename is a string descriptor.

call FILE SIZE-SEND (filename) |

END LOOP

! This is the final routine and MUST be called last. It returns |
! the total blocks used by files and directories, passed into
! FILESIZESEND. Arguments are passed by reference

call FILESIZERET (f_blocksused, d_blocksused)

2 FINDCACBITMAP.C
Returns all CAC logged bitmap file names that are stored in the
MDFF SYSTEM:[BITMAPS] directory for a given scale and zone.

FINDCACBITMAP.C contains two routines, each is described as a
subtopic. In order for the process to work correctly, the I
routines must be called in proper sequence.

3 Include-Files

F-66

C"

The following file must be included for use with
FINDCACBITMAP.C:

V2_DIR:DATADEFS.H Contains type definitions for common
variables (e.g., scale, zone)

3 FINDCAC BITMAPINIT
This routine must be used to pass the scale and zone of the
CAC bitmaps file names you wish to have returned by the other
routine, FIND_CACBITMAPRET.

This routine MUST be invoked first. The following syntax is used
to invoke find cac bitmap_init:

void findcacbitmapinit (SCALE *scale, ZONE *zone)

where
scale INTEGER*4 Contains the chart scale

(passed, by reference)
zone INTEGER*4 Contains TS zone

(passed by reference)

3 FINDCAC BITMAPRET
Returns CAC a bitmap file name. This routine should be invoked
iteratively until filename is returned NULL (i.e., no more files).

All CAC bitmaps will be returned using the scale and zone that
were passed earlier to the FINDCACBITMAPINIT routine.

The following syntax is used to invoke findcacbitmap_ret:

char *findcacbitmap_ret (void)

where
char Contains a CAC bitmap file name

(returned)

void There are no arguments passed

3 Example
The following (FORTRAN-like) code segment provides an example of
the correct usage.

call FIND CAC BITMAP INIT (scale, zone) ! Use this routine to
! pass the scale and zone of the
! CAC bitmaps file names you wish
! to have returned by the next
! call.
! This routine MUST be invoked
! first.
! Scale and zone are INTEGER*4

F-67

! and passed by reference. 3
! Loop through until filename is NULL (i.e., no more files). All
! CAC bitmaps will be returned using the scale and zone that were
! passed to the FINDCACBITMAPINIT function.

LOOP UNTIL filename = NULL
filename = FINDCACBITMAPRET () ! Filename is a character U

! string pointer and is
! returned

END LOOP

2 FINDFILE.FOR I
Uses search and file names to find a file. This module contains
two entry points; one for calling from OpenVMS "C" (FINDFILEC)
and one for calling from OpenVMS FORTRAN (FINDFILE). I
Two entry points are required, due to the passing of strings by
descriptor in VMS FORTRAN. In the "C" version, string arguments
are of type "char *" (i.e., pointer to a NULL terminated string). I
No include files required for invocation.

3 FORTRAN-Invocation I
The following syntax is used in FORTRAN invocation:

lstatus = FIND-FILE (searchname,reset,filename) |

where
lstatus is a return value that contains one of the
following values:
When the search status is .TRUE. then a match was found.
When the search status is .FALSE., no VMS filename
matching the search specification was found. e

searchname: VMS filename specification search mask. 3
Wildcards (*) are allowed.
(passed, character*(*))

reset: If .TRUE., this resets the search context.
This is used to set a new VMS filename
specification search string.
(passed, logical) I

filename: VMS filename specification matching the search
mask.
(returned, character*(*))

3 C Invocation
The following syntax is used in C invocation: |

F-68

I

lstatus = FINDFILE_C (searchname,reset,filename)

where
lstatus is a return value that contains one of the
following values:
When the search status is .TRUE. then a match was found.
When the search status is .FALSE., no VMS filename
matching the search specification was found.

searchname: VMS filename specification search mask.
Wildcards (*) are allowed.
(passed, char*)

reset: If .TRUE., this resets the search context.
This is used to set a new VMS filename
specification search string.
(passed, char*)

filename: VMS filename specification matching the
search mask.
(returned, char*)

2 GENERIC QUEUE STOPPED.FOR

A FORTRAN function that determines whether a generic queue,
defined by the currently set processing thread, is stopped.
A status is returned with one of the following values:

returns TRUE when the generic queue is stopped
returns FALSE when the generic queue is NOT stopped

3 Invocation
The following syntax is required for proper invocation.

lstatus = GENERICQUEUESTOPPED ()

where

lstatus is the return status of the generic queue, that
is declared as a LOGICAL variable.

returns TRUE ' when the generic queue is stopped.
returns FALSE when the generic queue is NOT stopped.

3 Example
The following example uses FORTRAN-based pseudocode to show
proper use of GENERICQUEUESTOPPED.

logical generic_queue_stopped ! The function declaration

F-69

logical lstatus ! The status returned by
! genericqueue_stopped

c* Returns .TRUE. if queue is stopped. *

c* NOTE: Set the processing thread to be tested before running*

lstatus = GENERICQUEUESTOPPED () 3
c* Print status of Generic Queue *

if (lstatus .eq. .true.) then
print*,' I

print*, 'Generic Queue Stopped...'
else

print*,' '
print*, 'Generic Queue NOT Stopped...'

endif

2 GETDS SEGMENT NAME.FOR 3
This subroutine builds the complete downsampled segment path name
(excluding the color/zone file extension (e.g., ".RNT"). 3
Two types of root directory paths (i.e., "dspath" argument) for
the downsampled data are supported: 3

Root directory paths terminating in a colon ":"
Root directory paths terminating in a bracket "]"

When the downsampled segment root directory path terminates in a I
":" the complete segment path name (i.e., the "segpath" argument)
is completed by adding the string: 3

"[Rsnnnnn]12345678"

When the downsampled segment root directory path terminates in a 3
"]" the complete segment path name (i.e., the "segpath" argument)
is completed by removing the "]" and adding the string:

".Rsnnnnn]12345678" U

See topic CACPROCESSING, subtopic SegmentFiles for documentation I
on downsampled segment file naming conventions.

3 Invocation 3
Subroutine GET DS SEGMENTNAME should be invoked using the
following syntax:

F-70

I

call GETDSSEGMENTNAME (dspath,row,col,segpath,seglen)

4.-

Items contained within the parameter list include: -

dspath: Root destination directory for the downsampled data
For example, CHART SEGMENTS:.

(passed, character*(*))

row: Row number of downsampled segment data.
(passed, integer*4)

column: Column number of downsampled segment data.
(passed, integer*4)

segpath: Complete downsampled segment path name (excluding
the color/zone file extension: .R NT for example).
(returned, character*(*))

seglen: Length of "segpath"
(returned, integer*4)

3 RequiredSubroutines
The following subroutines are utilized by GETDSSEGMENTNAME:

ENCODEKEY: Create the segment key name from the row and
column.

STRINGLENGTH: Find the length of a string. Terminates on
NULL characters, blank characters and the size
of storage allocated for the string.

No "INCLUDE" (i.e., external) files are required.

2 GET ODI DATA.C
GET_ODI_DATA contains routines that read mapstation
subdirectories, extract row and column values for each of the
segments contained within the subdirectories, and store the sorted
row/column values in a structure.

GETODIDATA contains the following routines, each of which is
described as a subtopic.

GETODIDATA Fills the structure containing row and column
values. Returns the number of segments found, the
filled structure and a status flag.

QUICKSORT Performs a quicksort, by ascending row, on the
passed row/column structure.

GET HEX DIGITS Is passed a number (stored in a byte) and uses

F-71

masks to obtain the number's hexadecimal
equivalent. |

3 GET ODI DATA
GET_ODI_DATA is passed the row/column structure that will contain
row/column values for all segments contained within the specified I
subdirectories, and the number of subdirectories to be included.

GET ODI DATA prompts the user for mapstation subdirectory 3
filenames, which are opened one at a time. The first 4 bytes of
subdirectory files are read to obtain information about the
subdirectory - mainly the number of keynames that are contained
within the subdirectory.

Keynames are extracted and decoded to their row/column values and
then placed in the row/column structure.

A count of the number of segments contained within the
subdirectory is kept. This count is returned as a long variable.

Once all subdirectory filenames are entered, the operator
terminates input by entering 'EXIT'. 3
The newly filled structure, containing row and column values, is
sent to a quicksort where the row and column pairs are sorted in
ascending row number.

For all segments contained within the mapstation subdirectories,
GETODIDATA returns the newly filled structure containing sorted
row and column values, a status flag indicating termination status
and the total number of segments found.

4 Invocation I
GETODIDATA is invoked using the following syntax.

long getodi data (struct coord ROWCOL [SEG MAX], long *flag, |
*long num files)

where
long A variable containing the number

of segments, within the
subdirectories, that were found

struct coord ROWCOL [SEGMAX] Array containing the structures I
for row/column values

long flag Status return flag. I
Normal return status = FALSE
Abnormal return status = TRUE 3

long num files Passed value represents the
number of mapstation sub-
directories to be read. |

F-72

Returned value represents the
total number of segment files
found.

3 QUICKSORT
Performs a quicksort, by ascending row, on the passed row/column
structure.

4 Invocation
QUICKSORT is invoked using the following syntax.

void quicksort (struct coord ITEM[], long left, long right)

where
struct coord ITEM[] Array structure containing row/column

pairs
long left A pointer to the structure's first element
long right A pointer to the structure's last element

3 GETHEXDIGITS
When passed a number stored in a byte, GETHEXDIGITS uses masks
to obtain the hexadecimal equivalent.

For example:
The binary number 01010010 equivalent in hexadecimal is 52.

The 5 (i.e., from the left-most 4 bits) is returned in the
variable named LEFTHEX.

The 2 (i.e., from the right-most 4 bits) is returned in the
variable named RIGHTHEX.

4 Invocation
GETHEXDIGITS is invoked using the following syntax.

void GET HEXDIGITS (unsigned *righthex, unsigned *left_hex,
unsigned number)

where
unsigned *right_hex Right-most digit of hexadecimal

equivalent. A return value.

unsigned *lefthex Left-most digit of hexadecimal
equivalent. A return value.

unsigned number Input value to be converted to
hexadecimal

3 RequiredSubroutines
The following routine is utilized by GETODI DATA:

F-73

DECODEKEY.FOR A FORTRAN subroutine that decodes a key name
into its row and column components. For I
additional information see CAC-Source Code
subtopic DECODEKEY.FOR

2 GETPASEGMENTNAME.FOR
This subroutine builds the complete compressed segment path name
(including the zone number in the file extension). U
Two types of root directory paths (i.e., "papath" argument) for
the compressed data are supported. One root directory path |
terminates with a colon ":" and the other terminates with a "]".

When the compressed segment path terminates with a ":" the
complete segment path name (i.e., "segpath" argument) is completed
by adding the string: 3

"[Rsnnnnn]12345678.90.z"

When the compressed segment path terminates with a "]" the 3
complete segment path name (the "segpath" argument) is completed
by removing the "]" and adding the string:

".Rsnnnnn]12345678.90z" I
See topic CACPROCESSING, subtopic SegmentFiles for documentation
on compressed segment file naming conventions. I

3 Invocation
Subroutine GETPASEGMENTNAME should be invoked using the 3
following syntax:

call GET PA-SEGMENT NAME (papath,row,col,segpath,seglen) |

Items contained within the parameter list include:

papath: Root destination directory for the compressed data
for example, CHARTODIDISK:[MAP5.PA013301].

(passed, character*(*))

row: Row number of compressed segment data.
(passed, integer*4)

column: Column number of compressed segment data.
(passed, integer*4)

segpath: Complete compressed segment path name, including the |
zone number in the file extension.

(returned, character*(*))

F-74

seglen: Length of "segpath"
(returned, integer*4)

3 RequiredSubroutines -
The following subroutines are utilized by GETPASEGMENTNAME:

ENCODEKEY: Create the segment key name from the row and
column.

STRINGLENGTH: Find the length of a string. Terminates on
NULL characters, blank characters, and the size
of storage allocated for the string.

No "INCLUDE" (i.e., external) files are required.

2 GETPID.FOR
Contains routines that obtain a Process Identification (PID)
value. Each routine is described as a subtopic.

3 GETPID
This routine uses VAX/VMS system services to obtain the calling
process's PID. The PID is returned in numeric (hexadecimal)
format. The concept of PIDs is unique to VAX/VMS. Hence, this
routine may not be applicable to other operating systems. No
include files are required for invocation.

The following syntax is used to invoke GET-PID:

call GETPID (pid)
where

pid: Current process's Process Identification Code. This
is a hexadecimal number. For additional information,
see PID in the VAX/VMS documentation.
(returned, integer*4)

3 GETPID ASC
This routine uses VAX/VMS system services to obtain the calling
process's PID. The numeric PID is translated into a character
string and returned in text (ASCII) format. PIDs are normally
eight characters long. The concept of PIDs is unique to VAX/VMS.
Hence, this routine may not be applicable to other operating
systems. No include files are required for invocation.

The following syntax is used to invoke GETASC:

call GETPIDASC (pidstring)
where
pid_string: The calling process's VAX/VMS PID in text format.

(returned, character*(*))

F-75

2 GETUNIXBINARYTIME.C I
GETUNIXBINARYTIME.C contains a suite of C language functions
that are used to convert a VAX time string into the corresponding I
UNIX binary time.

Functions contained within the suite are described as subtopics. |

3 GETUNIXBINARYTIME
When passed a VAX time string, this subroutine calls functions to
convert the time string to uppercase, get UNIX binary time as a
VAX quadword, and convert that quadword to a longword. The UNIX
binary time is returned. |

GET UNIX BINARY TIME is invoked using the following syntax:

long GETUNIXBINARYTIME (char *timestr) |
where

long the return value, UNIX binary time
char *timestr the VAX time string, passed as input 3

3 CONVERTQUADTOLONG
When passed a VAX quadword as two longwords containing a UNIX
binary time in nanoseconds, this function returns the UNIX binary I
time in seconds as a longword.

CONVERTQUADTOLONG is invoked using the following syntax: |

long CONVERTQUADTOLONG (long one, long two)
where

long the return value, UNIX binary time
long one first part of the VAX quadword, passed value
long two second part of the VAX quadword, passed value 3

3 UPPERCASE
Converts a character string to uppercase. 3
UPPERCASE is invoked using the following syntax:

void UPPERCASE (char str [], long strlength) |
where

char str character string being converted to upper case
long strlength length of str[]

3 RequiredSubroutines

TIMEM.MAR, is required for program linkage. See CACSOURCE-CODE 3
subtopic TIMEM.MAR for additional information.

I
F-7 6

2 IISPLOTPROCS.FOR -

IISPLOTPROCS contains a suite of FORTRAN subroutines and
functions that enable the use of graphic devices and generation
of hardcopy plots on the TEKTRONIX printer. The display image is '
written into a device independent buffer that can be used with
any graphics and/or image device (e.g., IVAS, VWS color monitors).

All routine names begin with the string "IIS_" followed by a
simple function descriptor. For example, the routine named
IISLABEL is used for labeling purposes. There are routines for
displaying 8-bit and 24-bit data. The 8-bit routines are
differentiated from the 24-bit routines by adding "8 BIT" to the
routine's name. For example, the routine IIS LABEL Is used for
labeling 24-bit images and the routine IISLABEL_8BIT is used for
labeling 8-bit images.

The subroutines and functions contained within IIS PLOT PROCS are
described as subtopics. Information concerning proper usage,
invocation and parameters is included within the subtopics.

For retrieval purposes within MDFFHELP, routines IISBORDER. and
IISLABEL. are terminated with a period - this is done only to
differentiate them from other routines with similar names.

3 IIS IVAS INIT
Function IIS IVAS INIT contains IVAS commands necessary to
allocate the IVAS 600 for stand-alone operation. This function
must be invoked by all programs using the IVAS and be one of the
first routines invoked.

4 Input_Output
Parameters for IISIVASINIT include the following:

Input parameters: None

Output parameters: None

Return value: INTEGER*4, channel opened by the FIVASOPEN
call. This value is needed to close the channel
in order to release the device upon termination
of a program.

If the channel is not closed (using FIVASCLOSE(ivaschan)),
the device may remain allocated to the user, not allowing
others access to the IVAS.

4 Invocation
IISIVASINIT is invoked using the following syntax:

ivaschan = IISIVAS_INIT()

F-77

3 IIS 8BIT INIT
Function IIS_8BITINIT is used to load the 8-bit color definitions
into the 8-bit color table. IIS_8BIT INIT must be invoked before
loading the color table. The color definitions are added into the 5
table starting at index 241.

4 Input Output
Parameters for IIS_8BIT INIT include the following:

Input parameters:

byte RGBTABLE (256,3) A 256 by 3 array of RGB colors. I
Output parameters: None

4 Invocation
IIS 8BIT INIT is invoked using the following syntax:

call IIS_8BITINIT (rgbtable)

3 IISLABEL
Subroutine IISLABEL is used to write 24-bit text onto a graphics
monitor (i.e., any 24-bit color monitor, such as the IVAS color
monitor). Text is written using the red, green, and blue buffers 1
in the user's program. Text appears on the monitor and on any hard
copies that are produced on the TEKTRONIX printer.

Because IISLABEL loads the image buffer with desired text,
IISLABEL must be invoked prior to loading the buffer onto the
IVAS color monitor (via appropriate subroutine). Similarly,
IISLABEL must be invoked prior to creating a TEKTRONIX print file
(via subroutine CREATEIVASPRINTEKIMAGES).

4 Character Set |
Printable characters are listed below.

Upper and lower case characters: |

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz |

Numbers:
0123456789

Other characters:

+ - = () * & % $ # @ , .1 \ / ? < > ! ' " [] I

4 InputOutput
The following parameters are required as input: |

F-78

I

character*(*)TI

integer*4

integer*4

,ABEL A string of currently defined characters,
of a length assigned in the calling
routine, to write into the image.

XOFF Number of pixels from the left side of
image to place the start of "TLABEL".

YOFF Number of pixels from the top of image
to place the start of "TLABEL".

XOFF and YOFF refer to the placement of the lower left
corner of the first character of "TLABLE"

character*1 TDIRECT

integer*2

Defines whether the string "TLABEL" is to
be written horizontally (input value 'H')
or vertically (input value 'V').

ULINE Underline option. If "ULINE" is 0, then
the label "TLABEL" is not underlined. A
value of 1 will place a single line
under "TLABEL" with a single pixel gap
between the characters and the line.
With a value of 2, two lines are placed
under the characters with no gap between
the line and the characters.

logical ONBLACK

integer*2

If true, then the characters are written
into the image on a black background,
overwriting image data. If false, then
characters are written with the image
data as background (i.e., image data is
not blacked out).

RGB Used for defining text color. This value
is a hexadecimal value with the following
values:

'rgb'x: where rgb refers to the red, green, and blue
guns of the IVAS. A value of 0 for r, g, or
b indicates the gun is "off," a value of 1
indicates the gun is "on."

'rgb' values resultant colors

'000'x BLACK (not recommended)
'100'x RED
'010'x GREEN
'001'x BLUE
'110'x YELLOW
'011'x CYAN
'101'x MAGENTA
'l11'x WHITE

F-79

Two-dimensional byte buffer containing
the red component of the image.

byte RBUF(XDIM,YDIM)

byte GBUF(XDIM,YDIM)

byte BBUF(XDIM,YDIM)

integer*4 XDIM

integer*4 YDIM

Output parameters: None

4 Invocation
IISLABEL is invoked using the following syntax

Two-dimensional byte buffer containing
the green component of the image.

Two-dimensional byte buffer containing
the blue component of the image.

First dimension of RBUF, GBUF and BBUF
byte array; represents the number
of pixel columns in the image.

Second dimension of RBUF, GBUF and BBUF
byte arrays; represents the number
of pixel rows in the image.

call IISLABEL (tlabel, xoff, yoff, tdirect, uline, rgb,
rbuf, gbuf, bbuf, xdim, ydim)

3 IISLABEL 8BIT
Subroutine IISLABEL_8BIT is used to write 8-bit text onto a
graphics monitor (i.e., any 8-bit color monitor). Text is written
using one buffer.

For printing on the TEKTRONIX printer, the single 8-bit buffer is
converted into 8-bit red, green, and blue buffers (resulting with
a 24-bit image). Since the 8-bit value of the characters are used
as an index into the color table, the conversion to 24-bit still
yields the identical color defined (i.e., the 8-bit red value is
converted to its 24-bit equivalent).

Because IIS LABEL_8BIT loads the image buffer with desired text,
IIS LABEL_8BIT must be invoked prior to loading the buffer onto
the IVAS color monitor (via appropriate subroutine). Similarly,
IISLABEL_8BIT must be invoked prior to creating a TEKTRONIX print
file via subroutine CREATEIVASPRINTEKIMAGES.

4 CharacterSet
Printable characters are listed below.

Upper and lower case characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

F-80

I
1

I
I
I

*

I
I
I
1

I
I
I
I
I
I
I
I
I
I

Numbers:

Cl

C..
r-
<,:11

<. P0123456789

Other characters:

+ - = () * & % $ I Q , .1 \ / ? < > ! ' " []

4 Input_Parameters

The following parameters are required as input:

character*(*)TLABEL A string of currently defined characters,
of a length assigned in the calling
routine, to write into the image.

integer*4

integer*4

XOFF Number of pixels from the left side of
image to place the start of "TLABEL".

YOFF Number of pixels from the top of image to
place the start of "TLABEL".

XOFF and YOFF refer to the placement of the lower left
corner of the first character of "TLABLE".

character*1 TDIRECT

integer*2

Defines whether the string "TLABEL" is to
be written horizontally (input value 'H')
or vertically (input value 'V').

ULINE Underline option. If "ULINE" is 0, then the
label "TLABEL" is not underlined. A value
of 1 will place a single line under
"TLABEL" with a single pixel gap between
the characters and the line. With a value
of 2, two lines are placed under the
characters with no gap between the line
and the characters.

logical ONBLACK

integer*2

If true, then the characters are written
into the image on a black background,
overwriting image data. If false, then
characters are written with the image
data as background (i.e., image data is
not blacked out).

RGB Used for defining text color. This value
is a hexadecimal value with the following
values:

'rgb'x: where rgb refers to the red, green, and blue
guns of the graphics device. A value of 0 for
r, g, or b indicates the gun is "off",

F-81

a value of 1 indicates the gun is "on".

'rgb' values resultant colors

'000'x BLACK (not recommended)
'l00'x RED
'0l0'x GREEN
'00l'x BLUE
'll0'x YELLOW
'0ll'x CYAN
'l0l'x MAGENTA
'lll'x WHITE

byte RGBBUF(XDIM,YDIM) Two-dimensional byte buffer containing
the red, green, and blue components of
the image.

integer*4

integer*4

XDIM First dimension of RGBBUF byte array;
represents the number of pixel columns
in the image.

YDIM Second dimension of RGBBUF byte array;
represents the number of pixel rows
in the image.

Output parameters: None

4 Invocation
IISLABEL_8BIT is invoked using the following syntax:

call IIS LABEL_8BIT (tlabel, xoff, yoff, tdirect, uline, rgb,
* rgbbuf, xdim, ydim)

3 IISBORDER
Subroutine IISBORDER places a border around a 24-bit image.

4 Inputoutput
The following

integer*2

parameters are required as input:

RGB Used for defining border color. This value
is a hexadecimal value with the following
values:

'rgb'x: where rgb refers to the red, green, and
blue guns of the graphics device. A value of
0 for r, g, or b indicates the gun is "off",
a value of 1 indicates the gun is "on".

'rgb' values resultant colors
F-82

I
I
I
I
1

I
I
I
I
I
I
I
I

C

C".

7-

4 -,

r.-'

'000'x BLACK (not recommended)
'l00'x RED
'0l0'x GREEN
'00l'x BLUE
'110'x YELLOW
'0ll'x CYAN
'l01'x MAGENTA
'111'x WHITE

integer*2 THICI

byte

byte

byte

integer*4

(NESS Indicates the number of lines used in
drawing border. An increasing number of
lines increases the border thickness.
Allowed values: 1, 2, 3.
A value less than 1 is set to 1 and
a value greater than 3 is set to 3.

RBUF A two-dimensional byte buffer containing
the red component of the image.

GBUF A two-dimensional byte buffer containing
the green component of the image.

BBUF A two-dimensional byte buffer containing
the blue component of the image.

XDIM First dimension of RBUF, GBUF, and BBUF
byte arrays; represents the number of
pixel columns in the image.

integer*4 YDIM Second dimension of RBUF, GBUF, and BBUF
byte arrays; represents the number of
pixel rows in the image.

Output parameters: None

4 Invocation
IISBORDER is invoked using the following syntax:

call IISBORDER (rgb, thickness, rbuf, gbuf, bbuf, xdim, ydim)

3 IIS BORDER 8BIT
Subroutine IISBORDER_8BIT is used to place a border around an
8-bit image for display on a graphics device or on TEKTRONIX hard
copies.

4 Input_Output
The following parameters are required as input:

integer*2 RGB Used for defining border color. This value

F-83

1
is a hexadecimal value with the following
values: I

'rgb'x: where rgb refers to the red, green, and
blue guns of the graphics device. A value of
0 for r, g, or b indicates the gun is "off",
a value of 1 indicates the gun is "on".

'rgb' values resultant colors

I
I

I

I

BLACK (not recommended)
RED
GREEN
BLUE
YELLOW
CYAN
MAGENTA
WHITE

integer*2 THICKNESS

byte

integer*4

integer*4

Indicates the number of lines used in
drawing border. An increasing number of
lines increases the border thickness.
Allowed values: 1, 2, 3.
A value less than 1 is set to 1 and
a value greater than 3 is set to 3.

RGBBUF Two-dimensional byte buffer containing
the red, green, and blue components of
the image.

XDIM First dimension of RGBBUF byte array;
represents the number of pixel columns
in the image.

YDIM Second dimension of RGBBUF byte array;
represents the number of pixel rows
in the image.

Output parameters: None

4 Invocation

IISBORDER_8BIT is invoked using the following syntax:

call IISBORDER_8BIT (rgb, thickness, rgbbuf, xdim, ydim)

3 IISPLOT-DRIVER
Program IISPLOTDRIVER is a program that displays the currently
defined character set onto the IVAS monitor and produces a hard
copy on the TEKTRONIX plotter. The character set is displayed
several times, once in each of the definable colors. The user has

F-84

'000'x
'100'x
'010'x
'00l'x
'l10'x
'01l'x
'l01'x
'111'x

I

I
I
I

I

I
I1

I

I

I

I

I

I

the option of using an 8-bit or 24-bit display (i.e., invocation
of subroutines IISLABEL or IISLABEL_8BIT).

A hard copy can be produced by entering a file name at the prompt.
Entering a <CTRLZ> at the prompt will terminate program execution
without producing a hard copy.

IISPLOTDRIVER can be executed from any node. However, only node
"AVENGR" is capable of both display on the IVAS color monitor and
generating a hard copy on the TEKTRONIX plotter. All other nodes
may only generate hard copies on the TEKTRONIX plotter.

3 IISPLOT PROCS.INC
Common to each routine within IIS PLOT PROCS suite is the INCLUDE
file IIS PLOTPROCS.INC. This file contains the character set
definitions.

IISPLOTPROCS.INC is not necessary unless access to variables
names, which are used to display the defined character set, is
required. Hence, the program IISPLOT DRIVER uses this file (and
for no other reason).

Variable names containing the defined character set can be found
in either IISPLOT DRIVER.FOR source code or IISPLOTPROCS.INC
source code.

2 LL MAXMIN.C

LLMAXMIN.C contains routines that determine the true pair of
minimum and maximum coordinates from a set of coordinate pairs.
These coordinate pairs can be expressed as row/column values or
latitude/longitude values. Also, LL MAXMIN determines whether the
set of coordinate pairs transition 180 or 0 degrees longitude and
adjusts the minimum and maximum coordinates accordingly.

3 Routines

LLMAXMIN consists of four routines, only three will be used
at any given time. Each routine is described below.

LLMAXMININIT: Initializes the variables used by the other
subroutines. This routine MUST be called first.

LLMAXMINSENDRC: Repeat for each row/column pair within
the set. This is invoked if the calling
routine has row/column values available. If
this routine is called, LL-MAXMIN SEND is not
used.

LL-MAXMINSEND: Repeat for each latitude/longitude pair within

F-85

the set. This is called if the calling
routine has latitude/longitude values I
available. If this routine is called,
LLMAXMIN SEND RC is not used.

LLMAXMINRET: The final subroutine, must be called last. I
Returns the minimum and maximum coordinates
(in terms of LATITUDE and LONGITUDE) from all
of the pairs passed to LLMAXMINSEND.

In order to work correctly, the three selected subroutines MUST be
invoked in proper sequence. The Example subtopic shows proper
usage.

3 Example
The following example uses pseudocode to show proper use of I
LL MAXMIN and its associated subroutines.

call LLMAXMININIT (scale, zone) ! Initialize the variables used l
! by the next two calls. Scale

and zone are INTEGER*4
! (or longs) and are passed
! by reference. This routine
! MUST be called first.

Loop - repeat for each latitude/longitude or row/col pair within

! the set.
If the calling program has row/col values, use LLMAXMIN SEND RC I

! If the program has latitude/longitude values, use
LL MAXMIN SEND 3

LOOP 1 to NumberOfCoordinatePairs

! Send as many latitude/longitude pairs as desired. I
! Latitude and Longitude are REAL*8 (or DOUBLE) and
! are passed by reference. U

call LLMAXMINSEND (latitude, longitude)

..... .O. 1..

! Send as many row/col pairs as desired. X
! Row and Column values are INTEGER*4 (or longs) and
! are passed by reference. 3

call LLMAXMINSENDRC (row, col)

I
- ~~~~~~F-86

END LOOP

! This is the final subroutine and MUST be called last. It
! returns the minimum and maximum coordinates (latitude and
I longitude) from all of the pairs passed to LLMAXMINSEND
Ior to LL MAXMINSENDRC.
! Normal minimum and maximum values are used when the pairs
! have been determined to ONLY cross 0 degrees longitude.
! However, when the set crosses 180 degrees, or both 0 and 180
! degrees, the least positive and least negative longitude
Icoordinates are used for the maximum longitude and minimum
!longitude values, respectively.
!Latitude and Longitude are REAL*8 (or DOUBLE) and are passed
I by reference.

call LLMAXMINRET (minlon, maxlon, minlat, maxlat)

2 MAP DIR-PROCS.C

MAPDIRPROCS.C contains a suite of C language routines that
perform a variety of operations on a MAP directory. Subtopics
include requirements, individual routines within the suite
and subroutines that are external to the suite.

3 ExternalSubroutines
The following external routines are required for linking:

GET PADIR.FOR: Gets the PA directory name
GETPIDASC.FOR: Gets the process' system ID number.

CHART STATUS.FOR: Reads the CHART STATUS file.
SEND TO MDFF CONSOLE.MAR: Send messages to display on the MDFF

operator console(s).
FINDZONE.FOR: Determines which TS zone the data are

in.

3 Requirements
The following subtopics describe items that are required by
the routine suite.

4 Arrays
Some routines require array variables - the array names and a
list of their elements include:

Array COORD[4] defines an area by 2 corners in latitude/longitude
where:

COORD[0] = southwest lat;
COORD[l] = southwest lon;
COORD[2] = northeast lat;
COORD[3] = northeast lon;

Array CORNERS[4] defines an area by 2 corners in row/column

F-87

where:
CORNERS[0] = southwest row;
CORNERS[1] = southwest col;
CORNERS[2] = northeast row;
CORNERS[3] = northeast col;

Array LIMITS[2] defines upper and lower boundary expressed in
latitude where:

LIMITS[0] = bottom lat;
LIMITS[1] = top lat;

4 IncludeFiles
The file "V2 DIR:MAP DIR PROCS.H" contains data definitions used
by the routines and must be included in the source code.

4 GlobalVariables
Global variables, which are to be declared external (i.e.,
extern), include the following:

long COLLIMIT; Number of columns in a given zone

double LIMITS[2]; Described above

double TOPLAT, BOTLAT; Top and bottom latitudes of a zone

char FORM[MAXLEN]; Form = "CHART-SEGMENTS" for DS Data
Form = "MAP" for COMPRESSED Data

char TRIMMEDDIR[MAX_LEN]; Trimmed Directory name

3 SuiteDescriptions

Individual routines are described as subtopics.

4 BUILDSTRUCT
void BUILDSTRUCT (long row, long col, struct coord ITEM [], long

*count);
Is passed a row and a column and places them into the
structure COORD.

4 CAL ZONE COVERAGE
double CALZONE COVERAGE (long zone, long scale);

Is passed the zone and scale.

The global array LIMITS[2], is filled with the upper and
lower latitude valTes for that zone.

Returns the column width in segments, COLLIMIT.

4 CORNERIN BOUNDS
long CORNERINBOUNDS (long zone, long scale, long row, long col,

F-88

I

double coord[]);

Is passed the zone, scale, row/column to be tested and
bounds.

Returns TRUE if the segment is within bounds "
FALSE if the segment is not within bounds.

4 DECIDETO DEL NONPOLAR
long DECIDETODELNONPOLAR (long corners[], long row, long col);

Is passed row/column values and determines whether or not
the nonpolar segment should be deleted.

Returns TRUE if the segment should be deleted
FALSE if the segment should not be deleted

4 DECIDETO DEL POLAR
long DECIDETODELPOLAR (long zone, long scale, long row,

long col, double coord[]);

Is passed the zone, scale, row/column to be tested, and
bounds.

Returns TRUE if the segment is within polar bounds
FALSE if the segment is not within polar bounds.

4 DELETE DIR
void DELETEDIR (char *buffer);

Sets the protection level of a file to DELETE and then
deletes it.

4 DELOR SAVE SEGMENT
long DELORSAVE SEGMENT (long zone, long scale, long row,

long col,long corners[], double
coord[]);

Calls functions to determine whether or not a segment
should be deleted.

Returns TRUE if the segment should be deleted
FALSE if the segment should not be deleted

4 DETERMINE BOUNDS
long DETERMINEBOUNDS (double coord[]);

Adjusts the array COORD to take into account zone overlap.

Returns TRUE if COORD was modified.

F-89

FALSE if COORD was not modified.

4 ELIMINATE
void ELIMINATE (char *path, char *eliminate);

When passed a path name, eliminates the substring 1
*eliminate.

4 GET CORNERS |
void GETCORNERS (long scale, long zone, long *corners, double

*coord);]
Is passed a chart scale, zone, and coordinates.

Returns row/column corners for the segment.

4 GET CS TRIMMED DIR
long GETCSTRIMMEDDIR (;

Gets the COMPRESSED data trimmed directory name from the
processing thread and stores it in the global variable,
TRIMMEDDIR.

4 GET DS DIR
long GETDSDIR (char fname[]);

Finds the MAP Directory of the current processing thread,
extracts the scale, and returns a path name to the map
directory as fname.

4 GETDSTRIMMED DIR
long GETDSTRIMMEDDIR (;

Gets the DS data trimmed directory name from the processing
thread and stores it in the global variable, TRIMMED DIR.

4 GETKEYFROM DS FILENAME
long GETKEYFROM_DSFILENAME (struct dsc$descriptors fname,

long *zone);

Is passed a downsampled segment file name, as fname,
and zone. |

Extracts and returns the segment file's key name.

4 GETKEYFROM FNAME X
long GETKEYFROMFNAME (struct dsc$descriptors fname);

Is passed a key name as fname.
Returns the key fname as (converted to) a ten digit
integer.

F-90

4 GETLOGICAL NAME '

long GETLOGICALNAME (char *logical, char *resultant); '

Is passed a logical name and returns its equivalence.

Returns TRUE if an equivalence is found 7-

FALSE if an equivalence is not found

4 GETMAPDIR
long GETMAPDIR (char fname[J);

Finds the MAP Directory of the current processing thread,
extracts the scale, and returns a path name to the map
directory.

4 GETPANUM
long GETPANUM (char *string);

Extracts a PA number for a PA directory.

4 GETROWFROM FNAME
long GETROWFROMFNAME (struct dsc$descriptor_s);

When passed a row name as FNAME, the row name is
converted to a six digit integer and returned.

When the six digit row number begins with a 1,
the 1 is dropped and the row number is made negative.

A value of 999999 is returned when the fname is not
a row fname.

4 LATLONIN CORNER
long LATLONINCORNER (long scale, long zone, long row, long col,

double lat, double lon);

Is passed the scale, zone, row/column to be tested,
and the lat/lon of a corner.

Returns TRUE if the segment is a corner
FALSE if the segment is not a corner

4 MAKE DIR FILE
void MAKEDIRFILE (char *buffer);

Is passed a string containing a file name in the form
(example) CHARTODI_DISK:[MAP3.PA01300l.ROOOOOO]TEMP.DOC;

The ']' bracket is removed and replaced with '.DIR'
to form a directory file name.

F-91

The last '.' period is replaced with a ']' bracket
before the new directory file name.

The final result is
CHARTODIDISK:[MAP3.PA013001]R00000O.DIR; |

4 MAKEFILEDIR
struct dsc$descriptors MAKEFILEDIR (struct dsc$descriptor_s);

Is passed a string descriptor containing a file name in
the form CHARTODIDISK:[MAP3.PA013001]R00000O.DIR;1 1
The end ']' bracket is removed and replaced with a '.'
period.

The last '.' period is replaced with an end bracket,
the extension and version numbers are removed.

The new file name descriptor and its length are returned.

2 QAL MAXMIN.C
Contains a suite of routines that determine the true minimum and
maximum latitude and longitude coordinates of ADRG data on a CD I
from the ADRG QAL file (see the DMA ADRG product specification for
additional information about the QAL file).

QALMAXMIN.C contains two subroutines. In order to work
correctly, both routines must be invoked in the proper sequence.

3 QAL MAXMININIT
Initializes variables that are used by the routine QALMAXMINRET.
Hence, it must be invoked first. The following syntax is used to I
invoke qalmaxminminit:

qalmaxmininit (&scale, &zone) 3
where

scale contains the chart scale
(long, passed by reference)

zone contains the TS zone I
(long, passed by reference)

3 QALMAXMINRET |
Returns the minimum and maximum latitude and longitude values for
the data that have been determined from the QAL file on the CD.
This routine MUST be invoked last. The following syntax is used
to invoke qalmaxmin ret:

qalrnaxminret (&minlon, &maxlon, &minlat, &maxlat) 3
F-92

where
minlon, maxlon Contain minimum and maximum

longitude coordinates
(double, passed by reference)

minlat, maxlat Contain minimum and maximum
latitude coordinates
(double, passed by reference)

3 Example
The following FORTRAN code segment provides an example of proper
usage of QALMAXMIN.C:

C*** Variable declarations ****
real*8 minlat, maxlat, minlon ,maxlon ! Contains

the
coordinates

integer*4 zone/O/, scale/5/
character*(80) filename ! Contains the full QAL file name

filename = 'CDROM06:[ONA5010)ONA5010l.QAL' // char(O)

C**** Note that FORTRAN, by default, ****
C**** passes arguments by reference ****

call qalmaxmininit (scale, zone, %ref(filename))
call qalmaxminret (minlon, maxlon, maxlat, minlat)
print (6,*) minlon, maxlon, maxlat, minlat

2 QUADPROCS.C
A suite of C language routines that compute minimum and maximum
latitude/longitude coordinates for polar map data. These
functions are designed for use with polar data and will not
effect nonpolar data. When the minimum and maximum
latitude/longitude values of a polar region are constant (i.e., if
this region was translated to a nonpolar representation, its
shape would be rectangular), special measures must be taken to
find the true minimum and maximum row and column values of the
data contained within this region.

As a latitude/longitude point changes its latitude position in the
polar region, it traces to an arc configuration. Conversely, as
the point changes its longitude position, it traces a perfect
circle. The point at which this circle crosses the polar quadrant
axis (0, 90, -90, 180) is where the maximum or minimum row/column
values lie. Thus, if a region is reduced to the quadrants it
crosses, the true minimum and maximum row/column values can be
computed.

These routines break a polar rectangular area into smaller areas
that are bounded by quadrants (defined in terms of
latitude/longitude). Subtopics include requirements, individual

F-93

routines within the suite, and an example of usage.

3 Requirements
The following files must be included for use with QUADPROCS.C:

V2_DIR:QUAD.H Contains data definitions used by the
subroutines.

V2_DIR:DATADEFS.H Contains type definition for common
variables (e.g., scale, zone)

The following subroutines are required for linkage. For
additional information about each subroutine, see MDFFHELP under
the main topic CACSOURCECODE.

LL MAXMIN.C A suite of routines that determine the true pair |
of minimum and maximum latitude and longitude
coordinates. g

RCMAXMIN.C A suite of routines that determine the true pair
of minimum and maximum row/column pairs.

3 QUADRANTLONGITUDEBOUNDS
Passes in the starting longitude and the ending longitude values
of a region and should be called before functions
QUADRANT LONGITUDERET and QUADRANTLONGITUDE NEXT are invoked.
The following syntax is used to invoke QUADRANT_LONGITUDEBOUNDS:

void quadrantlongitudebounds (LON *left, LON *right)
where

left Contains a starting longitude coordinate (passed)
right Contains an ending longitude coordinate (passed)

3 QUADRANTLONGITUDERET
When iteratively called until returning a FALSE value, this
routine returns all quadrants that lie within the initial
longitude bounds that were passed to QUADRANT LONGITUDE BOUNDS.
The following syntax is used to invoke QUADRANT_LONGITUDE RET:

BOOLEAN quadrantlongitude_ret (LON *left, LON *right)
where

a BOOLEAN value returns TRUE if a new longitude I
quadrant is found.
Otherwise, returns FALSE

left Contains a starting longitude coordinate X
(double, passed)

right Contains an ending longitude coordinate
(double, passed) I

3 QUADRANTLONGITUDE NEXT
Sets up the longitude values for the next call to |

F-94

I

QUADRANTLONGITUDERET. This function must be called last. The
following syntax is used to invoke QUADRANTLONGITUDENEXT:

void quadrantlongitude_next (LON *left, LON *right)
where

left Contains a starting longitude coordinate
(double, passed)

right Contains an ending longitude coordinate
(double, passed)

3 Example
The following code segment, which prints the coordinate values

-90, -180, 180, 90, provides an example of usage:

left lon = -90;
right_lon = 90;

/* stating longitude coordinate */
/* ending longitude coordinate */

/* Establish starting and ending longitude coordinates */
quadrant_longitudebounds (&left_lon, &right_lon);

/* Obtain quadrants containing map data */

while (quadrant_longitude_ret (&leftlon, &right_lon))

printf ("%lf %lf\n", left_lon, rightlon);
/* Establish next coordinates to be used */
quadrantlongitude_next (&left_lon, &right_lon);

}

2 RC MAXMIN.C
RC_MAXMIN.C, written in C language, contains routines that
determine the true pair of minimum and maximum row/column values
from a set of row/column pairs. RCMAXMIN.C determines if the
row/column values transition 180 or 0 degrees and adjusts the
minimum and maximum row/column values accordingly.

3 Routines

RCMAXMIN.C consists of three routines:

RCMAXMININIT:

RCMAXMINSEND:

RC MAXMIN RET:

Initializes variables used by the next two
calls. This routine MUST be called first.

Repeat for each row/column pair within
the set.
The final routine and MUST be called last.
It returns the minimum and maximum row
and column values for all of the pairs passed
to RC MAXMINSEND.

F-95

In order to work correctly, all three routines must be invoked in
proper sequence. The Example subtopic shows proper usage. 3

3 Example
The following example uses pseudocode to show proper usage of
RCMAXMIN.C and its associated routines.

call RCMAXMININIT () ! Initialize variables used by the
next two calls. This routine MUST be I! called first.

! Loop - repeat for each row/column pair within the set. 1
LOOP 1 TO NumberOfROWCOLS

! Send in as many row/col values as you like. I
! Row and Col are INTEGER*4 (LONG) and
! are passed by reference. - I
call RCMAXMIN-SEND (row, col)

END LOOP 3
! This is the final routine and MUST be called last. It returns
! the minimum and maximum row/column values from the set of '
!row/column pairs passed to RCMAXMINSEND. Normal minimum and
! maximum values are used when the set has been determined to ONLY
! cross 0 degrees longitude. However, when the set crosses 180, or
! both 0 and 180 degrees, the least positive and least negative |
! column values are used for the maximum column and minimum column
! values, respectively. Values are passed by reference

call RC-MAXMINRET (mincol, maxcol, minrow, maxrow) l

2 SENDMAIL.FOR U
Provides an interface to the VAX/VMS MAIL utility.
This routine can only be invoked from VAX/VMS FORTRAN due to the
passing of character strings using descriptors. The SENDMAIL_C
routine can be used to send VAX/VMS mail from a "C" languageroutine.
No include files required for calling. However, this routine is 3
VAX/VMS dependent.

3 Invocation
The following syntax is used to invoke SENDMAIL:

call SEND-MAIL (sendto,subject,buffer,lines)

where |

F-96

I

sendto: VMS username to receive the mail message.
(passed, character*(*))

subject: Subject title.
(passed, character*(*))

buffer: Character string buffer containing the text of the
mail message. This buffer may contain several lines of
text.
(passed, character*(*) array)

lines: Number of lines contained in "buffer".
(passed, integer*2)

Note: The variable "buffer" may be a single string; in the case of
a one line message or it may be a character array. For example,
if the declaration "character*80 message_buf(10)" is used with
"lines" equal to 10, SEND MAIL will send a message of 10 lines
with 80 characters per line to the VMS username that is
specified in "send-to".

2 SEND MAIL C.C

Subroutine SENDMAILC sends a VAX/VMS mail message from programs
written in C programming language. The subtopic Example shows
proper usage.

3 Example
The following pseudocode provides an example of SENDMAIL C
usage.

#include <stdio.h>
#include <string.h>

#define MAX LINES OF MAIL 250 /* Max # of lines in message */
#define MAX LINELENGTH 250 /* Max # of characters in line */
main ()

{

char send_to[MAX LINELENGTH); /* Name of person(s) to send to */
char subject[MAXLINELENGTH]; /* Subject of message.

char linebuffer[MAXLINESOFMAIL)[MAXLINELENGTH];

long lines; /* Number of lines in message */

strcpy (sendto, "SMITH, JONES");
strcpy (subject, "TEST OF SENDMAIL-C");

F-97

/* Insert Message */
strcpy (linebuffer[0], 3
strcpy (linebuffer[l], " HELLO,
strcpy (line buffer[2),
strcpy (line buffer[3], "This is a test of sendmail c.c ");
strcpy (line buffer[4], " You can place up to 250 lines ");
strcpy (line buffer[5], " in your message and each line ");
strcpy (line buffer[6], " can be 250 characters in length.");
strcpy (line buffer[7], " ";

/* Number of lines in message */
lines = 9; I
/* Send Mail */
send mail_c (send_to, subject, linebuffer, lines);

}

2 TIMEM.MAR
This C language routine separates one quadword into two longwords
using the following protocol: I

* is passed a VAX time string and its length

* builds a string descriptor

* calls BINTIMS (a VAX system macro) which returns a quadword.
The quadword contains the number of seconds (in 100 /
nanoseconds) since 17-NOV-1858 00:00:00.00.

* converts this quadword into two (more manageable) longwords. j
3 Example
The following example uses C-based pseudocode to show proper use
of TIMEM.MAR

long one; /* first long word, returned argument */
long two; /* second long word, returned */

long length; /* length of the character string TIMESTR */
/* passed argument *

/* VAX time string, passed argument
char timestr[VAXTIMESTRLEN) = "12 AUG 1991 12:00:00"; 3
length = strlen (timestr); I
/* Get quadword and return as two longwords */
TIMEM (&two, &one, timestr, length);

F-98

2 USEADRG LOGICALS.FOR
Inserts the specified processing thread's logical name table into
the LNM$FILEDEV logical name search path. The routine uses the
FORTRAN "common" block variables PROCESSINGCODE and PROCCODELEN
in the LOGICALS.INC file.

3 Invocation

The following syntax is used to invoke USEADRGLOGICALS:

call USEADRGLOGICALS

No parameters are passed. This routine uses the FORTRAN "common"
block variables PROCESSINGCODE and PROCCODELEN that are located
in the LOGICALS.INC file.

3 RequiredLogicals
It is assumed that the LNM$FILEDEV logical name equivalence
before modification is as follows:

LNM$PROCESS
MDFF
LNM$IISFILE DEV
LNM$JOB
LNM$GROUP
LNM$SYSTEM
DECW$LOGICALNAMES

This routine inserts the logical name table, specified by
PROCESSINGCODE and PROCCODELEN, before the LNM$PROCESS logical
name. This causes any processing thread definitions to be found
first. The include file LOGICALS.INC is required for invocation.

F-99

I

I
I

I

I
I
I

I

I
I

a

I

I

I

I

I

I

I

c
APPENDIX G

C-.
TOPIC FILE CNCPROCESSING.HLP

(-'

G-1

I

I

I

I
II
i

I

l

I

II

I

I

I

I

TOPIC FILE: CNC PROCESSING.HLP

1 CNCProcessing

This covers the processing of COMPRESSED NAUTICAL CHART (CNC) data.
Since both the CAC and the CNC have the same source data format,
ADRG, their processing steps are very similar.

See the CNCSpecifics topic for CNC specific information.

2 CNCSpecifics

----------- TO BE ADDED LATER ----------
Put items that differ from CAC processing HERE.

G-3

I

i

I
I
I

C

APPENDIX H D

TOPIC FILE DEFINITIONS.HLP

Definitions
ChartUpdatingManual . . .
ColorCompression
Compression
CORE_Segments
Datum
DitherPattern.
Downsample
EDGESegments
Ellipsoid
FILLED Segments
Logical CDROMSector . . .
Micron
Neatlines
Pixel
ProcessingThread.
Rowand Column Coordinates
Segment
Spatial Compression . . .
Template
TSSystem Coordinates .
UNFILLEDSegments
VectorQuantization

. . . . * . *

. . . . *

. . . * * * * . * *

. . . . * . * . *

. *

. . . . * . *

. . . * * * * . *

. . . * * * * *

. . . . * . *

. . . * * * *

. . . . *

. *

* *

. * *

* * *

.

.

.

* . * . . * . *

* . * . * * * *

.

.

. . . . *

H-1

I- ,:
H-3
H-3
H-3
H-3
H-4
H-4
H-4
H-4
H-4
H-5
H-5
H-5
H-5
H-5
H-5
H-5
H-5
H-6
H-6
H-6
H-6
H-6
H-6

I

lI
a

I

I

I

I

I

c

TOPIC FILE: DEFINITIONB.HLP

The following text and subtopics appear when Definitions is
selected as an XDFFHELP subtopic:

Definitions

The following topics are definitions for terms used in the
MDFF.

Additional information available:

Chart Updating_Manual Color_Compression Compression
CORESegments Datum DitherPattern
Downsample EDGESegments
Ellipsoid FILLEDSegments Logical CDROMSector Micron
Neatlines Pixel Processing_Thread
RowandColumnCoordinates Segment SpatialCompression
Template TSSystemCoordinates UNFILLEDSegments
VectorQuantization

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 Definitions
The following topics are definitions for terms used in the
MDFF.

2 Chart UpdatingManual
Chart Updating Manual (CHUM), the Defense Mapping Agency
Aeronautical CHUM is a semiannual publication, with monthly
supplements, that provides textual and/or graphic additions,
deletions, or modifications of cartographic data to published
aeronautical charts. Changes appearing in the CHUM are
generally considered to be critical to flight safety.

2 Color Compression
The second phase of creating Compressed Aeronautical Charts,
after transformation from ARC to Tesselated Spheroid, which
reduces storage requirements by a factor of 3:1. Color
compression is achieved by subjecting the image data to a
vector quantization process that selects the closest match of
240 entries in a color palette to represent each pixel.

2 Compression
A reduction in the amount of space required to store a given
set of data. The MDFF compresses Arc Digitized Raster Graphics
to Compressed Aeronautical Chart by a factor of 48:1 in three

H-3

steps:
(1) Downsampling data from ARC to TS, which reduces

resolution of data by four to one (from 256
pixels per inch to 128 pixels per inch).

(2) Color compressing data by three to one (from 24- 1
to 8-bits per pixel).

(3) Spatially compressing data by four to one (from 3
four 8-bit pixel groups to one 8-bit codeword).

2 CORESegments
A PASSI processing term used to identify all full Tesselated
Spheroid segments for a given ARC Digitized Raster Graphics
CD-ROM. I

2 Datum
There are two types of DATUM; horizontal and vertical. Both
descriptions are provided. I
Datum (horizontal)- The horizontal geodetic datum is uniquely
defined by five quantities. Three of these, latitude(phi),
longitude(lambda), and geoid height (N) are defined at the
datum origin. The adoption of specific values for the geodetic
latitude and longitude implies specific deflections of the
vertical at the origin. A geodetic azimuth is often cited as I
a datum parameter, but the azimuth and longitude are precisely
related by the Laplace condition so there is no need to define
both. There are two other quantities that define the 4
reference ellipsoid: the semimajor axis and flattening or
the semimajor axis and semiminor axis.

Datum (vertical)- A level surface to which elevations are U
referred, usually mean sea level, but may also include mean
low water, mean lower low water, or an arbitrary starting
elevation(s).

2 Dither Pattern
A matrix, utilizing fill patterns, that creates the illusion of 3
intensity and color. Dither patterns vary from one another by
how the matrix is filled.

2 Downsample U
A term used to describe the process by which ARC Digitized
Raster Graphics is transformed into Tesselated Spheroid.
Downsampling produces a 4:1 reduction in the size of the data 3
by decreasing data resolution from 256 to 128 pixels per inch
(approximately, averages the values of four ARC Digitized
Raster Graphics pixels to form one Tesselated Spheroid pixel).

2 EDGESegments
A PASSI processing term used to identify all partially filled

H-4

Tesselated Spheroid segments for a given ARC Digitized Raster
Graphics CD-ROM.

C.-o

2 Ellipsoid
A surface whose plane sections (cross sections) are all
ellipses or circles, or the solid enclosed by such a surface.

2 FILLEDSegments
A PASS3 processing term used to identify previous edge segments
from PASS1, which have been merged with other edge segments to
form a full segment.

2 Logical CDROM Sector
The smallest addressable block of data (2048 bytes) on an ISO
9660 CD-ROM.

2 Micron
A unit of measure; one millionth of a meter.

2 Neatlines
The lines that bound the body of a map, usually parallels and
meridians, but may be conventional or arbitrary grid lines.
Also called sheet lines.

2 Pixel
A pixel, or picture element, is the smallest entity in a raster
graphic image.

2 ProcessingThread
A three letter code used to identify an MDFF processing build.
Processing threads are only used internally within the MDFF.
The first character distinguishes the data set type [(A)-CAC,
(N)-CNC, (D)-DLMS, etc.); the second letter identifies the
scale of the data set [(0)-1:50K, (l)-1:100K, (2)-1:250K,etc.);
the third letter is a sequence identifier [(A)- first,
(B)-second, etc.]

2 Row and Column Coordinates
In Tesselated Spheroid, segments are arranged by latitudinally
based rows and longitudinally based columns within the
equatorial and temperate zones. Row 0 is located with its
southern boundary on the equator. Positively numbered rows
extend northward from row 0 in the northern hemisphere, and
negatively numbered rows extend southward from row -1 in the
southern hemisphere.

The first column of segments in each nonpolar zone (column 0)
is located with its western boundary on the 0 degrees meridian.
Positive columns extend eastward from column 0 and stop at the
180 degrees meridian. Negative columns extend westward from
column 0 and stop at the 180 degrees meridian.

H-5

Within a single CAC segment, rows of pixels are numbered from
bottom (row 0) to top (row 255). Columns of pixels are
numbered from left (column 0) to right (column 255).

2 Segment
An array of 256 rows with 256 pixels each, stored in band
sequential form. Equivalent to approximately two square
inches of paper chart. 3

2 SpatialCompression
The third phase of processing CACs, which reduces storage
requirements by a factor of 4:1. Spatial compression
is achieved by applying a vector quantization process that
first classifies the image and then replaces each 2 by 2
pixel block in the image with a coded entry from a 256-entry
lookup table.

2 Template
A definition file applied here to MDFF mapstations, used to I
define a coverage of a given area at a given scale. The
template may then be used to transfer data from a CAC to
an aircraft optical disc. |

2 TS_SystemCoordinates
In the nonpolar zones, Tesselated Spheroid coordinates are the
WGS 84 phi and lambda under the equirectangular projection. In I
the polar zones, Tesselated Spheroid coordinates are created by
rotating the polar coordinates to the equatorial zone, in the
equirectangular projection.

2 UNFILLED Segments
A PASS3 processing term used to identify previous edge segments
from PASS1 which, after merging, are still unfilled.

2 Vector Quantization
VectorQuantization, used by the MDFF applies the "lossy"
compression method to both color and spatially compress ARC
Digitized Raster Graphics data. Uses a training set of data to
predict colors and pixel patterns over a larger set of data.

I

H-6

l

APPENDIX I
TOPIC FILE DLMSPROCESSING.HLP

I-1

I

I
i
I
I

TOPIC FILE: DLMBPROCEBSING.HLP

1 DLMS Processing C

This topic will cover the processing of Digital Land Mass
System (DLMS) data.

-------------- TO BE ADDED LATER -----------

I-3

N a a - a a w an a a a a a a No am lo

APPENDIX J
TOPIC FILE HINTS.HLP

.--

ExecutingPrograms . J-3

Program mDevelopment .l.o.pn.t. J-4

Logical-Names J-4
ContactingPeople J-5

Directories-and-FilesJ-5
Batch and Print Jobs J-7

J-1

I

I
I

I

I

I

I
I

I

a

1

3

I
I

I

I

I
I

I

TOPIC FILE: HINTS.HLP

The following text and subtopics appear when Hints is selected as
an MDFFHELP subtopic:

HINTS

Type the name of one of the categories listed below to obtain
a list of related commands and topics. To obtain detailed
information on a topic press RETURN until you reach the
"Topic?" prompt and then type the name of the topic.

Additional information available:

Executing_Programs ProgramDevelopment LogicalNames
ContactingPeople DirectoriesandFiles
Batch andPrintJobs

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", which is located in column 1.

1 Hints
Type the name of one of the categories listed below to obtain a
list of related commands and topics. To obtain detailed
information on a topic press RETURN until you reach the "Topic?"
prompt and then type the name of the topic.

2 ExecutingPrograms

The NRL Map Data Formatting Facility utilizes a variety of
programs that are available for execution. A pseudostandard
naming convention has been adopted to facilitate finding the
appropriate program. This standard requires a program name to be
descriptive such that it includes the program's purpose and use.
For example, DISPLAYCAC VWS is a program that displays CAC data
on a Vax Workstation (VWS) monitor.

In general, programs that require the use of a specific monitor
should include the monitor as part of the program name. For
example, DISPLAYCACIVAS is a program which displays CAC data on
an IVAS monitor. Programs that display data should have the word
DISPLAY in the title.

In order to execute programs, the user must have a processing
thread assigned to their process. Processing threads are assigned
using the following symbol:

J-3

$ ADRGLOGS ###

where ### is the desired processing thread name. Almost all of the
programs for the MDFF require that a processing thread be
assigned. For more information on processing threads see the
topic ProcessingThreads under HINTS.

All of the programs for the MDFF should reside in the directory
MDFFEXE:. A directory listing of this area will show the names of I
the executable programs that are available.

In order to execute a specific program the following command
should be typed at the $ prompt.

$ RUN/NODEB MDFFEXE:ProgramName

For more information on specific programs look under the main
topic CACProgramDescriptions. This topic contains functional
descriptions of programs used by the MDFF. I

2 ProgramDevelopment
Source code for the majority of programs that have been developed
at the MDFF is stored in the V2 DIR (i.e., Software Version 2)
directory. Programs within the V2_DIR directory should be used as
a guide for future program development. Because of their modular
nature, some of the subprograms may be utilized as part of new I
software development.

Files that have an extension of .FOR are written in the FORTRAN I
programming language, and those with an extension of .C are
written in the C programming language.

In addition to source code that resides in the V2 DIR directory,
there is a library of routines that is also available for
inclusion in programs. This library, named MDFFLIB.OLB, is linked
using the same method as any other VAX/VMS object library. This
following command will list names of the object modules that are
contained within the library: 3

$ LIB/LIST MDFFLIB.OLB

See MDFFHELP main topics CAC ProgramDescriptions for program
descriptions and CACSOURCE_CODE for subprogram descriptions.

2 Logical Names
Logical names are used extensively by the MDFF for various
purposes. A logical name is a string that represents another,
usually longer, string. The main benefit of using logical names
is that they are typically used as descriptive strings for 3
physical devices. For example, the logical name CHART SEGS serves
as a descriptive name for the disk storage device DUA12:. Logical
names are maintained by VMS and may be translated by using the

J-4

I

following command.

$SHOW LOGICAL abcd

Where abcd is a logical name. For additional information on
logical names see the VAX/VMS help.

For additional information on specific logical names see the main
MDFFHELP topic LogicalNames.

2 Contacting_People
The MDFF has several methods for contacting people via VAX mail.
For information about VAX mail, see the VMS HELP topic MAIL.
There are three distribution lists that can be used for sending
messages to a certain group of people.

MDFFPROCESSORS.DIS Sending a message using this list will
contact people who are only involved in
the CAC processing.

LOCALMDFF.DIS Sending a message using this list will
contact all people who are directly
involved in the MDFF.

GLOBALMDFF.DIS Sending a message using this list will
contact everyone having an account
on one of the MDFF computers.

These distribution lists are located in the MDFFEXE directory.
2 Directoriesand Files
The MDFF uses many different directories and files in the
production of a CAC. The directory containing source code and
executable images that are used by the MDFF to produce a CAC is
named MDFFEXE.

CAC processing involves several formats of chart data (e.g., ADRG,
downsampled, and compressed) and other associated files (e.g.,
command procedures and log files).

The following is a list of major directories and the types of
files are contained therein.

[MDFF. XXX. SCRATCH]

Contains all of the command procedures and log files for
downsampling and compressing ADRG data. This directory is known
as "MDFF SCRATCH" for a specific processing thread (as noted by
"XXX") and is defined by the logical name MDFFSCRATCH. There are
five subdirectories that exist under this directory, descriptions
of each follow:

J-5

I
[.CBREPAIR]

[.CDYXXXXX]

[.CODEBOOKS]

[.VALIDATE]

[.PAXXXXX]

IContains all the segments that need to be
repaired. Each segment is in a subdirectory
for the row that segment is in.

Contains the SEGMENTS.DAT file of downsampled
segments for the YXXXXX CD-ROM. Note that "Y"
designates the Mastering Facility code and
"XXXXX" designates the CAC CD-ROM number.

Contains all the codebook build procedures
that have been used for this CAC.

Contains a copy of the transmittal header
file, TRANSH01.THF, that is used in the CD-ROM
validation procedure.

Contains all of the PA (palette) codebook
compression procedures.

I
I

I
I

I

I

I
I

I

I

CHARTSEGS:[MDFF.XXX.CHARTSEGMENTS.]

This is known as the "CHARTSEGMENTS" directory and it contains
row subdirectories for every row that is contained within area of
the XXX chart ODI build. Each row subdirectory contains the
downsampled segment files for that particular row. The logical
name CHARTSEGS serves as a descriptive name for the disk storage
device.

CHARTODI:[MDFF.XXX]

The chart ODI directory, contains the structure of the image that
will be written onto CAC CD-ROM. The logical name CHARTODI
serves as a descriptive name for the disk storage device. Onesubdirectory exists:

[.MAPX] The root of the tree structure for a CAC. The
chart scale is denoted by the "X". The following
subdirectories are associated: I

[.CDYXXXXX)

[.PAXXXXXX]

This directory and subdirectory tree contains
all of the header information for that
particular CD-ROM. Note that "Y" designates the
Mastering Facility code and "XXXXX" designates
the CAC CD-ROM number.

This directory contains the COVERAGE.DAT file
for that particular PA (i.e., palette), the row
directories containing all the compressed
segment files, and the color PALETTE.DAT file

J-6

I

I

I

I

I1

I

2 Batch and PrintJobs
To facilitate an easy data flow through the process of a chart ODI
build, the MDFF uses batch queues to manage the scheduling for the
reading of ADRG data, downsampling, compression, and print jobs.

The primary queue is named MDFFBATCH. This queue manages the
reading of ADRG CD-ROMs, downsampling, and the building of command
procedures. MDFFBATCH manages every type of activity except for
the submission of codebook compression jobs, which are handled by
a thread-specific batch queue.

Thread-specific batch queues parcel out codebook compression jobs
to one or more generic codebook queues. Each generic codebook
queue executes on a separate computer within the MDFF cluster.
There are seven generic codebook queues for compression jobs and,
depending on the priority of a certain thread, the number of
generic queues that are utilized by one particular thread may
vary.

J-7

I
I
I
I
I

I U
APPENDIX K -,

TOPIC FILE LOGICALNAME.HLP P

I ILI

I
I
I
I

I
I

I
I

I

I

I
I
I

K-1

U

I

I

TOPIC FILE: LOGICALNAME.HLP

1 Logical Names C-

_ F~~~C.

Much of the MDFF functionality is achieved through the use of
logical names. Most MDFF logical names are simply descriptive
abbreviations of longer strings. For example, V2 DIR is an MDFF
logical name that represents the directory name
DUA12:[MDFF.SOFTWARE.NOARL.SRC.V2].

Hence, the logical name V2_DIR represents the directory where all
the version 2 MDFF software is located. The MDFF uses logical
names for almost every aspect of the V2 software including
directory designations and queue names.

Use the following command to show current definitions for all
existing logical name tables:

$ SHOW LOGICAL *

The primary use of logical names is to facilitate easier
multi-thread processing of CACs. For example, in order to access
data (i.e., downsampled data, compressed data, etc.) that have
been processed as part of thread A4A, all of the logical names
associated with A4A must be set. This is done by using the
following symbol:

$ ADRGLOGS A4A

Use the following command to show current definitions for all
logical names associated with processing thread A4A:

$ SHOW LOGICAL/TABLE=A4A

K-3

a a a - a . a a a a a - a a a a a =

C -

r-APPENDIX L
TOPIC FILE MAPSTATION.HLP

Logging CACCDROMS .
TemplateCreation . . .
ODI Transfer . . .
Save ODI to MO
Miscellaneous

DrivesDevices . .
Palettes . . .
View Area
SizeRequirements

PaperCharts . . .
Scanning
Processing

.

....

...

.. . . . *

.
.. *

L-1

L-3
L-4
L-5
L-5
L-7
L-7
L-7
L-8
L-8
L-8
L-8
L-8

I

TOPIC FILE: MAPSTATION.HLP

The following text and subtopics appear when Mapstation is selected
as an NDFFHELP subtopic:

Mapstation

Four mapstations are used in the MDFF to create Aircraft Optical
Disks (AODs) that contain user-selected areas and scales of CAC
data. NRL'8 mapstations are 386-based PCs that have been
specifically designed by Horizons Technology Inc. (HTI) to
permit an operator to select predetermined areas and scales of
CAC data and output this data onto militarized AODs, which are
write-once, read-many (WORM) devices.

This topic provides descriptions of processing procedures.
Familiarity with mapstations and procedures is assumed.

Additional information available:

Logging CAC CDROMS Template Creation ODI Transfer
SaveODI toMO Miscellaneous PaperCharts

The following text comprises this MDFFHELP topic file. Note that
subtopics begin with the key "2", that is located in column 1.

1 Mapstation

Four mapstations are used in the MDFF to create Aircraft Optical
Disks (AODs) that contain user-selected areas and scales of CAC
data. NRL's mapstations are 386-based PCs that have been
specifically designed by Horizons Technology Inc. (HTI) to
permit an operator to select predetermined areas and scales of
CAC data and output this data onto militarized AODs, which are
write-once, read-many (WORM) devices.

This topic provides descriptions of processing procedures.
Familiarity with mapstations and procedures is assumed.

2 Logging_CACCDROMS

The following procedure is used to add new CAC CD-ROMS into the
mapstation database.

A - Select the "IMPORT MEDIA" option from the main menu.

B - Select the "CD-ROM" option from the "IMPORT MEDIA" menu.

C - Insert a CAC CD-ROM into the CD-ROM drive (device J:) and
press the RETURN key.

L-3

D - Upon completion, note the addition in the appropriate
logbook. I

2 TemplateCreation

Templates are used to define the data being transferred and must I
be created in order to perform an ODI transfer. Templates include
the area of coverage and data characteristics (e.g., scale). The
following procedure (steps A through K) is-used to create a a
template:

A - Select "DEFINE ODI" option from the main menu. 3
NOTE: The coverage area of template definition must be logged

into the mapstation database (see topic I
LoggingCACCDROMS).

B - Select the "NEW ODI" option from the "DEFINE ODI" menu. 3
C - Select the appropriate scale (1:500K is the default scale).

D - The world map will be displayed on the screen. Select the I
region of the world from which the template will be created
by scrolling to the desired location and pressing <RETURN>. 5

E - The regional map will be displayed. Scroll to the desired
area, which will be included in the new template, and press
<RETURN>. The limits of available coverage will be outlined I
in red. The new template must reside within this area of
coverage.

F - Select the "ADD COVERAGE" option from the "DEFINE ODI" menu.

G - Move the arrow on the display to a corner of the area to be
defined by the template and press <RETURN>. H - Scroll the
arrow until the desired coverage for the template
is enclosed by a box and press <RETURN>. If more areas need
to be defined, repeat steps G and H. When finished defining 5
an ODI, press <ESC>.

NOTE: If coverage is to be deleted: select the "DELETE
COVERAGE" option from the "DEFINE ODI" menu, place the
arrow within the box to be deleted and press <RETURN>.

I - Select the "ESTIMATE SIZE" option to determine the size of 1
the template coverage.

NOTE: The maximum size of an ODI subdirectory is 80 sectors. 3
The maximum number of subdirectories per zone per scale is
three.

L-4

J - Select the "VIEW AREA" option from the "DEFINE ODI" menu and
view data that are within the template area for the defined
scale and zone(s). If colors are incorrect, verify that the
proper palettes (*.PAL and *.AOD) are on the fixed disk.

K - Once steps I and J are completed, select the "SAVE ODI"
option from the "DEFINE ODI" menu and name the template.

2 ODITransfer

In order to perform ODI transfers, the palettes for template
coverage must be located on the fixed disk and in directory
C:\PALETTES

The following procedure (steps A through F) is used to
transfer an ODI.

A - Select the "TRANSFER ODI" option from the main menu.

B - Select output media from the "TRANSFER ODI" menu: the
"AIRCRAFT DISK" option for WORM media , or the "OPSTA ODI"
option for MO media.

NOTE: An ODI image file can also be written to the fixed disk

by selecting "AIRCRAFT DISK" option and leaving the DMU
turned off. This enables individual ODI builds to be saved,
merged, and transferred (after quality assurance is performed

on the image on fixed disk) before writing a WORM (see the
topic SaveODItoMO)

C - If writing onto WORM media, clean the disk before mounting it

into the DMU.

NOTE: Make sure write-protection is off. Initially, write
protection is on.

D - If writing onto WORM media, turn DMU power on.

E - Select the template to be transferred.

F - Insert any media that is prompted by the software (such as a
specific CAC CD-ROM).

2 SaveODI toMO

Optical Disk Image (ODI) generation can require a significant
amount of time and effort. Therefore, once an ODI has been
created, it is usually saved by transferring it from fixed disk
(drive E:) onto Magneto-Optical (MO) disk.

L-5

The following procedure (steps A through K) is used to merge

individual ODI builds to a single ODI and then copy that ODI onto

an Aircraft Optical Disk (AOD).

A - Turn on the mapstation and change to the default current
directory on the fixed disk (drive E:) by typing E: 3

B - Put the MO into the F: drive and type DIR F: to display the
list of ODI filenames.

C - Delete any old ODI files and ODIHEAD.TEX files that are on I
the E: drive.

D - Type LOCK. I
E - Copy an ODI from drive F: to E:ACOD.ODI

The file name ACOD is derived from Aircraft Optical Disk. I
F - Type UNLOCK.

G - Construct an ODI image from individual ODI builds by I
executing the program C:\HTIUTILS\ADDSUB xx. This program
will merge subdirectory xx from the ACOD.ODI file on E: drive

into an ACOD.OUT file.

H - Repeat steps D through G until all ODI files on F: have been 3
merged.

I - Upon completion of the ODI image build, rename the file I
ACOD.OUT to ACOD.ODI. Make a backup copy of ACOD.ODI onto a
MO with the following DOS command: 3

COPY E:ACOD.ODI F:filename.ODI

where filename is descriptive of the geographic area. 3
J - Retain header information that is contained in the EMPTY

template by using the DOS copy command to copy the file
C:\HTIUTILS\EMPTY.TEX to the file E:ODIHEAD.TEX.

K - Put the WORM into the Digital Memory Unit (DMU), making sure
that it is secured.

L - Change directory to the C: drive, and type MAP to invoke the
mapstation software.

M - Select the "TRANSFER ODI" option and then select the
"TEMPLATE TO AOD" option. 3

L-6
-- or r~~~~~~~~~

1J - O~~~~~

N - Use the EMPTY template by pressing the ENTER key.

0 - The copy will begin.

2 Miscellaneous

The following topics contain informational notes.

3 Drives Devices
The following drives and devices are available on the
mapstations.

Drive Device
A: Three and a half inch floppy drive
B: Three and a half inch floppy drive
C: Hard disk drive, partitioned with D:
D: Hard disk drive, partitioned with C:
E: Hard disk drive
F: MO drive
J: CDROM drive

NOTE:
Drives C: and D: are based on a single partitioned hard disk
drive. These drives contain system and mapstation software.

Drive E: contains output ODI files, which by mapstation
software, will be transferred onto WORM media.

3 Palettes
Original mapstation palettes, provided by HTI, are different
from the NRL palettes. On NRL's mapstations (mapstations
2,3,6 and 7), NRL palettes have replaced HTI palettes for the
JNC,TPC, and JOG scales in all zones.

HTI naming conventions for mapstation palettes also differ from
NRL conventions. HTI mapstation palettes use scale values 1
through 6 where 1 = 1:2M ... 6 = 1:50K. NRL CAC uses scale
values 0 through 5 where 0=1:50K and 5=1:2M.

Palettes are located in the directory C:\PALETTES. Palette
names use the format PAsz.PAL where "s" indicates scale and "z"
indicates zone.

Color tables for each palette use the same prefix but have
an .AOD suffix. Hence, color tables use the format PAsz.AOD
where "s" indicates scale and "z" indicates zone. The
mapstation color table is pixel interleaved (red green blue,
red green blue, red green blue...) whereas NRL's color tables
are band interleaved (256 red, 256 green, 256 blue). To copy
NRL palettes to a mapstation, use the program REPLPAL

L-7

(available on mapstation 3, C: drive).

3 ViewArea W

Before transferring ODI data to an AOD, verify that the
mapstation has the proper palette for the defined transfer area. |

Use the VIEW AREA option from the DEFINE ODI menu to identify
the transfer palette. Viewing data from the VIEW MEDIA menu can
be deceiving because the palette used for viewing from this menu I
is NOT the palette transferred to the AOD!

3 SizeRequirements
The true maximum size per subdirectory is 80 sectors (this is
less than the mapstation ODI TRANSFER limit). Because a sector
contains approximately 1 MB, the maximum subdirectory size on a
WORM is approximately 80 MB.

The total amount of data that can fit onto WORM media is 260 MB.
However, the size of the ODI file on fixed disk may be larger.

2 PaperCharts
Paper charts may be scanned, processed and added to the
mapstation database.

3 Scanning |

JOG paper charts normally require about 12 scans each. The
chart must be folded and laid face down in the upper-left
corner of the scanner (view from front) in a horizontal £
direction. The folds in the chart should be as straight as
possible with the scan containing at least nine easily definable

points (control points for warping). I
Occasionally, a dark piece of paper may need to be placed
over the portion of chart being scanned because colors from I
the reverse side of the chart may be seen in the scan.

After all the scans for a chart have been completed, copy the I
scanned files onto a MO (using the DOS copy command). The
scanned files are located in scale-specific directories. For
example, when using JOG data, scanned files are located in
directory D:/1-250K/. After three or so charts, some of these
scanned image files must be deleted from the fixed disk to make
room for additional scanned image files. 1

3 Processing
The following procedure (steps A through K) is used to process
scanned charts. I
A - Using scanned image files from a MO, use the following DOC

command to copy all files to drive and directory D:/1-250K/ 1
L-8

COPY F:*.SC D:/1-250K/*.*

B - Type MAP to invoke the mapstation software.

C - Select the "PROCESS CHARTS" option, followed by the
"SELECT IMAGE" option, and chose one of the scanned
images that has just been copied.

D - Select the "CONTROL POINTS option followed by the
"ADD/MODIFY" option to add the control points to the
image. Usually, GEODETIC system coordinates are the
easiest to use, unless the image does not contain three
longitudinal lines. In the case of having only two
longitudinal lines, it may be easier to use the Universal
Transverse Mercator (UTM) system. The UTM system is
selected by pressing the space bar.

E - If the GEODETIC system is selected, enter nine sets of
latitude/longitude coordinates. These coordinates are used
as control points. If the UTM system is selected, refer
to the paper chart to obtain the required nine UTM
coordinates. A blue box is located at the bottom of the
paper chart that indicates now to use UTM coordinate
system.

F - For the last selection (coordinates) look for the blue
two-letter symbol (inclusive of the points you want to
select). The number will first be read vertically then
it will be read horizontally. For example, if the number
"9" is on the vertical line and "3" is on the horizontal
line, on which you're picking your control point within the
box ST, the resulting coordinate would be ST 900300.

G - Once all nine control points have been selected and
ALIGNED, select the "PROCESS IMAGE" option. This will
warp the image and take about three to five minutes to
complete. Save the warped image. Repeat steps C through H

until all scanned images have been warped.

H - Exit the mapstation software. Save the warped image files
by using the following DOS command to copy files *.WP1 onto
MO media (which is contained on F: drive):

COPY *.Wp1 F:*.*

Warped images are stored in the same directory as scanned
images.

NOTE: It is extremely important to perform the save operation
before scanned image processing is continued. The warped
files are needed to log the data files into the other

L-9

mapstations.

I - Once the warped images have been saved, invoke the W
mapstation software by typing, at the DOS level, MAP.
Select the "PROCESS CHARTS" option, then select the "LOG
IMAGES" option. This step will log the scanned image files
into the workstation database. After this step has
completed, warped images are automatically deleted from the
disk.

J - The last step involves reviewing the logged in scanned
data. This is done by going into the "DEFINE ODI" menu,
and selecting the "NEW ODI" option, the appropriate scale,
and the "VIEW AREA" option. This review will alert you to
any gaps, missing segments, or serious alignment problems I
that may have occurred. Use this same procedure to
perform appropriate repairs.

L-10

I

APPENDIX M
TOPIC FILE PROCESSINGTHREAD.HLP

M-1

I
I
I
I
I

TOPIC FILE: PROCESSINGTHREAD.HLP

1 Processing_Threads

Processing threads allow the MDFF to process more than one CAC at
a time. This enables greater flexibility and a higher CAC
production rate. The names of processing threads are descriptive;
all thread names are three characters in length with each
character having the following meanings:

Example: A4A

A: Type of charts being compressed
A - Aeronautical
N - Nautical
T - Test

4: Scale of the charts being compressed
0 - TLM (1:50K scale, TLM50)
1 - XXX (1:100K scale, TLM100)
2 - JOG (1:250K scale)
3 - TPC (1:500K scale)
4 - ONC (1:M scale)
5 - JNC (2:M scale)
etc.

A: Is used to delineate simultaneous chart ODI builds,
when both charts are at the same scale.

1 Symbols
A symbol defines a symbolic name for a character string or
integer value. The MDFF uses symbols as descriptive abbreviations
for VMS commands. MDFF symbols are declared globally; hence, they
are available to all users. The following command may be used to
list existing symbols (note, user-defined symbols will also be
included).

$ SHOW SYMBOL *

Examples of MDFF symbols and their translated meaning include:

MOUNT CDROM translates to the command @MDFFEXE:MOUNT CDROM
ADRGLOGS translates to the command @MDFFEXE:USE ADRG LOGICALS

M-3

I

I
APPENDIX N

I TOPIC FILE SYMBOLS.HLP

I
I
I

I

I

I

I

I

I

I

I

I

I
I

I
N-i

I

I

m m m m m m m m m - a a a a a a a a -

TOPIC FILE: SYMBOLB.HLP

1 Symbols
A symbol defines a symbolic name for a character string or
integer value. The MDFF uses symbols as descriptive abbreviations
for VMS commands. MDFF symbols are declared globally; hence, they
are available to all users. The following command may be used to
list existing symbols (note, user-defined symbols will also be
included).

$ SHOW SYMBOL *

Examples of MDFF symbols and their translated meaning include:

MOUNT CDROM translates to the command @MDFFEXE:MOUNT CDROM
ADRGLOGS translates to the command @MDFFEXE:USE ADRG_LOGICALS

N-3

I
I

I

I
I

I
U

U

I
I
I

I
I

